区分range() , np.arange() , np.linspace()】的更多相关文章

content: range() np.arange() np.linspace() 一.range(start, stop, step) 1.range() 为 python 自带函数 2.生成一个从start(包含)到stop(不包含),以step为步长的序列.返回一个 list 对象 range(stop) 返回 range object range(start, stop[, step]) 返回 range object 3.start默认为0,stop是必须的,step默认为1,可正可…
目录 range np.arange np.linspace range 特点 range()是python内置函数,指定开始值,终值和步长生成等差数列的一维数组 不包含终值 步长只能是整数,生成整数类型 返回的是range对象 测试代码 a = range(1,10,1) print(a) b = range(1,10,3) print(b) c = range(1,10,0.5) print(c) 运行结果 a和b成功生成range对象 c报错 np.arange 特点 np.arange(…
1. range range是python内置的一个类,该类型表示一个不可改变(immutable)的数字序列,常常用于在for循环中迭代一组特殊的数,它的原型可以近似表示如下: class range(stop) class range(start, stop, step=1) (注意,Python是不允许定义两个类初始化函数的,其实其CPython实现更像是传入不定长参数*args,然后根据len(args)来进行不同的拆分,但我们这里遵循Python文档风格写法) 如果只传入stop参数,…
range()返回的是range object,而np.nrange()返回的是numpy.ndarray() range尽可用于迭代,而np.nrange作用远不止于此,它是一个序列,可被当做向量使用. range()不支持步长为小数,np.arange()支持步长为小数 两者都可用于迭代 两者都有三个参数,以第一个参数为起点,第三个参数为步长,截止到第二个参数之前的不包括第二个参数的数据序列 某种意义上,和STL中由迭代器组成的区间是一样的,即左闭右开的区间.[first, last)或者不…
转自:http://blog.csdn.net/lanchunhui/article/details/49493633 range()返回的是range object,而np.nrange()返回的是numpy.ndarray() range尽可用于迭代,而np.nrange作用远不止于此,它是一个序列,可被当做向量使用. range()不支持步长为小数,np.arange()支持步长为小数 两者都可用于迭代 两者都有三个参数,以第一个参数为起点,第三个参数为步长,截止到第二个参数之前的不包括第…
转自:https://blog.csdn.net/ui_shero/article/details/78881067 1.np.linspace() 生成(start,stop)区间指定元素个数num的list,均匀分布 Parameters ---------- start : scalar  #scalar:标量 The starting value of the sequence. stop : scalar The end value of the sequence, unless `e…
range() 和 np.arange()区别 range(start,stop,step) 三个参数都必须是整数 np.arange()没有此类约束…
1.返回值不同 range返回一个range对象,numpy.arange和numpy.linspace返回一个数组. 2.np.arange的步长可以为小数,但range的步长只能是整数. 与Python的range类似,arange同样不包括终值:但arange可以生成浮点类型,而range只能是整数类型. 3. 是否包含终值 arange()类似于内置函数range(),通过指定开始值.终值和步长创建表示等差数列的一维数组,注意得到的结果数组不包含终值. linspace()通过指定开始值…
我的错误的代码是:train_labels = np_utils.to_categorical(train_labels,num_classes = 3) 错误的原因: IndexError: index 2 is out of bounds for axis 1 with size 2 错误的具体指向: categorical[np.arange(n), y] = 1 这是因为train_labels不是numpy.array的形式,需要把train_labels转化为numpy数组的形式…
a = np.arange(12) print(a, type(a)) b = range(10) print(b, type(b)) li = list(b) print(li) 拓展: 两个参数:起点,终点 三个参数:第三个是步长…