python 学习笔记-----编码问题】的更多相关文章

1.python 最早支持的是ASCII编码. 所以对于普通的字符串"ABC"为ASCII编码的形式.字母和数字之间的转换函数为ord('字母')和chr(‘数字’)函数. ord(‘A’)  输出 65     chr(65)输出 ‘A’ 2.后来添加了Unicode编码: 形式:u‘...’     例如 u‘中文’   用print 输出则为:中文   直接输出为一串编码字符 3.Unicode和utf-8 之间的转换: a.Unicode转换为utf-8的形式:u‘...’.e…
Python学习笔记(六) Ubuntu重置root密码 Ubuntu 16.4 目录结构 Ubuntu 命令讲解 1. Ubuntu重置root密码 启动系统,显示GRUB选择菜单(如果默认系统启动过程不显示GRUB菜单,则在系统启动时需要长按[Shift]键,显示GRUB界面) 按下[e]键进入命令编辑状态,到 linux /boot/vmlinuz-....... ro recovery nomodeset 所在行,将"ro recovery nomodeset"替换为"…
Python学习笔记(四) 作业讲解 编码和解码 1. 作业讲解 重复代码瘦身 # 定义地图 nav = {'省略'} # 现在所处的层 current_layer = nav # 记录你去过的地方 parent_list = [] # 是否结束循环 not_quit = True while not_quit: for i in current_layer: print(i) print("输入对应项进入 | 输入 b 返回上一层 | 输入 q 退出") choice = input…
[python学习笔记]7.更加抽象 类的定义就是执行代码块 在内存保存一个原始实例,可以通过类名来访问 类的实例化,是创建一个原始实例的副本, 并且所有成员变量与原始实例绑定 通过修改实例变量,可以解除与原始实例的绑定 self表示当前实例的引用 成员变量也称为特性 __bases__: 基类 __class__: 对象类型 __dict__: 所有特性 python的接口不用显式的制定对象必须包含哪些方法,只要对象符合当前接口就可以调用 可以对象上通过赋值的方式,创建变量 #!/usr/bi…
总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深度学习(deep learning)是机器学习的众多分支之一,它的模型是一长串几何函数,一个接一个地作用在数据上.这些运算被组织成模块,叫作层(layer).深度学习模型通常都是层的堆叠,或者更通俗地说,是层组成的图.这些层由权重(weight)来参数化,权重是在训练过程中需要学习的参数.模型的知识…
生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 使用 LSTM 生成文本 生成序列数据 用深度学习生成序列数据的通用方法,就是使用前面的标记作为输入,训练一个网络(通常是循环神经网络或卷积神经网络)来预测序列中接下来的一个或多个标记.例如,给定输入the cat is on the ma,训练网络来预测目标 t,即下一个字符.与前面处理文本数据…
人生苦短,我学python学习笔记目录: week1 python入门week2 python基础week3 python进阶week4 python模块week5 python高阶week6 数据结构与算法week7 GUI编程week8 网络编程与并发编程(操作系统)week9 数据库入门week10 常用数据库week11 LINUX操作系统week12 - week16 前端学习week17 网络框架之入门week18 网络框架之django框架week19 网络框架之flask框架we…
本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一样,深度学习模型不会接收原始文本作为输入,它只能处理数值张量.文本向量化(vectorize)是指将文本转换为数值张量的过程.它有多种实现方法 将文本分割为单词,并将每个单词转换为一个向量 将文本分割为字符,并将每个字符转换为一个向量 提取单词或字符的 n-gram,并将每个 n-gram 转换为一…
本节介绍基于Keras的使用预训练模型方法 想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络.预训练网络(pretrained network)是一个保存好的网络,之前已在大型数据集(通常是大规模图像分类任务)上训练好 使用预训练网络有两种方法:特征提取(feature extraction)和微调模型(fine-tuning) 特征提取是使用之前网络学到的表示来从新样本中提取出有趣的特征.然后将这些特征输入一个新的分类器,从头开始训练 ,简言之就是用提取的特征取代原…
本节介绍基于Keras的CNN 卷积神经网络接收形状为 (image_height, image_width, image_channels)的输入张量(不包括批量维度),宽度和高度两个维度的尺寸通常会随着网络加深而变小.通道数量由传入 Conv2D 层的第一个参数所控制 用卷积神经网络对 MNIST 数字进行分类Demo from keras import layers from keras import models from keras.datasets import mnist from…