我们之前经常提起的K-means算法虽然比较经典,但其有不少的局限,为了改变K-means对异常值的敏感情况,我们介绍了K-medoids算法,而为了解决K-means只能处理数值型数据的情况,本篇便对K-means的变种算法——K-modes进行简介及Python.R的实现: K-modes是数据挖掘中针对分类属性型数据进行聚类采用的方法,其算法思想比较简单,时间复杂度也比K-means.K-medoids低,大致思想如下: 假设有N个样本,共有M个属性,均为离散的,对于聚类数目标K: ste…
前几篇我们较为详细地介绍了K-means聚类法的实现方法和具体实战,这种方法虽然快速高效,是大规模数据聚类分析中首选的方法,但是它也有一些短板,比如在数据集中有脏数据时,由于其对每一个类的准则函数为平方误差,当样本数据中出现了不合理的极端值,会导致最终聚类结果产生一定的误差,而本篇将要介绍的K-medoids(中心点)聚类法在削弱异常值的影响上就有着其过人之处. 与K-means算法类似,区别在于中心点的选取,K-means中选取的中心点为当前类中所有点的重心,而K-medoids法选取的中心点…
之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析: 线性判别 最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方…
不管之前介绍的K-means还是K-medoids聚类,都得事先确定聚类簇的个数,而且肘部法则也并不是万能的,总会遇到难以抉择的情况,而本篇将要介绍的Mean-Shift聚类法就可以自动确定k的个数,下面简要介绍一下其算法流程: 1.随机确定样本空间内一个半径确定的高维球及其球心: 2.求该高维球内质心,并将高维球的球心移动至该质心处: 3.重复2,直到高维球内的密度随着继续的球心滑动变化低于设定的阈值,算法结束 具体的原理可以参考下面的地址,笔者读完觉得说的比较明了易懂: http://blo…
kmeans法(K均值法)是麦奎因提出的,这种算法的基本思想是将每一个样本分配给最靠近中心(均值)的类中,具体的算法至少包括以下三个步骤: 1.将所有的样品分成k个初始类: 2.通过欧氏距离将某个样品划入离中心最近的类中,并对获得样品与失去样品的类重新计算中心坐标: 3.重复步骤2,直到所有的样品都不能在分类为止 kmeans法与系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的.但是两者的不同之处也很明显:系统聚类对不同的类数产生一系列的聚类结果,而K均值法只能产生指定类数的聚类结果.具体类…
聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括了哪些样本,而Python和R中都有直接用来聚类分析的函数,但是要想掌握一种方法就得深刻地理解它的思想,因此自己从最底层开始编写代码来实现这个过程是最好的学习方法,所以本篇前半段是笔者自己写的代码,如有不细致的地方,望指出. 一.仅使用numpy包进行系统聚类的实现: '''以重心法为距离选择方法搭建的系统聚类算法原型''' # @Fef…
作为机器学习中可解释性非常好的一种算法,决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 一.初识决策树 决策树是一种树形结构,一般的,一棵决策树包含一个根结点,若干个内部结点和若干个叶结点: 叶结点:树的一个方向的…
一.简介 机器学习分为很多个领域,其中的连接主义指的就是以神经元(neuron)为基本结构的各式各样的神经网络,规范的定义是:由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界的刺激作出的交互反应.而我们在机器学习中广泛提及的神经网络学习就是机器学习与神经网络的交叉部分,本篇就将介绍基本的神经元模型.感知机模型的知识以及更进一步的多层感知机的具体应用(注意,本篇介绍的内容只是当下流行的深度学习的铺垫,因此只使用了无GPU加速的相应模块,关于深度学习的知识.当下…
DBSCAN算法是一种很典型的密度聚类法,它与K-means等只能对凸样本集进行聚类的算法不同,它也可以处理非凸集. 关于DBSCAN算法的原理,笔者觉得下面这篇写的甚是清楚练达,推荐大家阅读: https://www.cnblogs.com/pinard/p/6208966.html DBSCAN的主要优点有: 1) 可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类的聚类算法一般只适用于凸数据集. 2) 可以在聚类的同时发现异常点,对数据集中的异常点不敏感. 3) 聚类结果没有偏…
上一篇我们较为系统地介绍了Python与R在系统聚类上的方法和不同,明白人都能看出来用R进行系统聚类比Python要方便不少,但是光介绍方法是没用的,要经过实战来强化学习的过程,本文就基于R对2016年我国各主要城市第一.二.三产业GDP的量为三个不同特征,对这些城市进行系统聚类+分析: 数据来源:http://data.stats.gov.cn/easyquery.htm?cn=E0105 数据内容: 36个样本,3个变量,分别在三个xls文件中 分析目的: 为这些城市通过产业结构进行分类 实…