题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个l,r,求w[l]^w[l+1]^w[l+2]……w[r]  %m  ,即a[l]到a[r]的幂次方 解题思路:利用欧拉降幂公式 第一个要求a和p互质,第2个和第3个为广义欧拉降幂,不要求a和p互质,用在这题刚好. 因为有两种情况,所以我们需要自定义一下降幂取模公式. 我们对整个区间进行递归处理,每…
题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次递归计算. 因为欧拉函数不断迭代,下降到$1$的级别大概是$log(m)$的,那么对于每一次询问最多需要递归$log(m)$次 注意每次求解欧拉函数的时候要用map存下来,方便以后查询 #include <bits/stdc++.h> using namespace std; #define re…
题目链接  Round  #440  Div 1  Problem D 题意   把每个数看成一个点,如果$gcd(x, y) \neq 1$,则在$x$和$y$之间连一条长度为$1$的无向边.    设$d(u, v)$为$u$到$v$之间的最短路,如果$u$和v不连通那么$d(u, v) = 0$    现在给定$n$,求所有的满足$1 <= u < v <= n$的$d(u, v)$之和. 首先把$1$和大于$\frac{n}{2}$的质数去掉,这些数和任何数之间的最短距离为$0$…
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识,欧拉降幂定理 记住公式 $\LARGE n^x \equiv n^{\varphi(m)\ +\ x\ mod\ \varphi(m)}(mod\ m)​$这个式子当且仅当x>φ(m)时满足.那么就可以递归求解了. 暂时不太明白怎么证明 #include<iostream> #include…
题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还有一个问题是欧拉降幂公式, \(a^{b}mod c=a^{b mod\phi(c)+\phi(c)}mod c(a>c)\) 需要改写快速幂 //#pragma GCC optimize(2) //#pragma GCC optimize(3) //#pragma GCC optimize(4)…
虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数组长度和模数. 接下来一行n个数,表示w数组. 接下来一行一个整数q,表示询问次数. 接下来q行,每行两个整数l,r,表示一次询问. Output 对于每次询问,输出一行一个整数表示答案. Sample Input 6 1000000000 1 2 2 3 3 3 8 1 1 1 6 2 2 2 3…
这题刚开始看成求区间$\phi$和了........先说一下区间和的做法吧...... 就是说将题目的操作2改为求$(\sum\limits_{i=l}^{r}\phi(a[i]))\%P$ 首先要知道phi有公式$\phi(x)=x\prod\frac{p_i-1}{p_i}$ 只要维护每个数的模1e9+7值, 以及他包含的素数向量就好了 具体实现用线段树维护, 乘积直接打标记乘即可 对于素数向量的维护, 相当于是一个区间$or$, 直接暴力就好, 因为最坏情况相当于300次对所有点单点更新…
题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩展欧拉定理: $$a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~~gcd(a,p)\neq1,b<\phi(p)\\ a^{b\%\phi(p)+\phi(p)}~~~~gcd(a,…
Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)=p^k \times \frac{p-1}{p},k>0\\ \varphi(ab)=\varphi(a)\varphi(b),gcd(a,b)=1\\ \dots \] 有上面三个就够了. 要求 \[ \varphi(\prod a_i) \] 可以考虑把\(\prod a_i\)拆成 \[ \p…
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1. 将a[l,r]的数字乘以x(x<=300) 2. 求\(\varphi(\prod_{i=l}^ra[i])\)对1e9+7取模 题解 欧拉函数性质 假如\(p\)是一个质数,\(\varphi(p)=p-1\),\(\varphi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}…