uva 10733 The Colored Cubes<polya定理>】的更多相关文章

链接:http://uva.onlinejudge.org/external/107/10733.pdf 题意: N 种颜色可以涂成多少种立方体~ 思路: 使正六面体保持不变的运动群总共有: 1.不变置换(1)(2)(3)(4)(5)(6), 共1个; 2.沿对面中心轴旋转 90度, 270度 (1)(2345)(6), (1)(5432)(6) 同类共 6个; 3.沿对面中心轴旋转 180度 (1)(24)(35)(6), 同类共 3个; 4.沿对角线轴旋转 120度, 240度 (152)(…
UVA 10733 - The Colored Cubes 题目链接 题意:一个立方体.n种颜色,问能涂成多少不同立方体 思路:Ploya求解,正方体相应24种不同旋转一一计算出循环个数就可以.和 UVA 10601 - Cubes这题类似 代码: #include <stdio.h> #include <string.h> unsigned long long n; int main() { while (~scanf("%llu", &n) &…
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. 置换是什么呢?  置换的广义概念在不同语境下有不同的形式定义: 在集合论中,一个集合的置换是从该集合映至自身的双射:在有限集的情况,便与上述定义一致. 在组合数学中,置换一词的传统意义是一个有序序列,其中元素不重复,但可能有阙漏.例如1,2,4,3可以称为1,2,3,4,5,6的一个置换,但是其中…
这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Polya定理: 等价类的个数等于所有的置换f的km(f)的平均数 先考虑旋转,一共有n种情况,旋转1颗珠子构成循环,2颗,3颗·····n颗,那么对于旋转i颗珠子有gcd(i,n)个循环,那么根据Polya定理  置换的不动点的个数为 a = sum(tgcd(i, n)); 为什么又gcd(i, n)个…
题意:给定 n 和 m 表示要制作一个项链和手镯,项链和手镯的区别就是手镯旋转和翻转都是相同的,而项链旋转都是相同的,而翻转是不同的,问你使用 n 个珠子和 m 种颜色可以制作多少种项链和手镯. 析:一个很明显的 Polya 定理,先考虑旋转,如果逆时针旋转 i 个珠子,那么 0 i 2i 3i ... 是一个循环,这样的话就有 gcd(i, n) 个循环. 对于翻转,要考虑是奇偶,如果是奇数,肯定是要过一个珠子的,所以就一共有 n 个相同的,对于每一个会形成 n/2 个长度为 2 个的循环,和…
题意 项链和手镯都是由若干珠子串成的环形首饰,区别在于手环可以翻转,但项链不可以. 输入整数 $n$ 和 $t$,输出用 $t$ 中颜色 $n$ 颗珠子能制作成的项链和手镯的个数.($1\leq n \leq 50, 1 \leq t\leq 10$). 分析 这里共有两种置换,即旋转和翻转,项链只有其中一种,而手镯两种都有. 旋转:如果逆时针旋转 $i$ 颗珠子的间距,则 $0,i,2i,...$ 构成一个循环(大于 $n$ 时模 $n$),这个循环有 $n/gcd(i,n)$ 个元素.根据对…
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However,…
Let it Bead Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6443   Accepted: 4315 Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is b…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不能旋转重复就称之为本质不同) 输入样例:4 输出样例:6 那么要怎么办呢?暴力显然暴不出来…… 我们可以考虑使用置换群. 我们有两种算法: ①Burnside引理: 答案直接为1/|G|*(D(a1)+D(a2)+D(a3)+……+D(as)) 其中D(ak)为在进行置换群置换操作ak下不变的元素的…