关于boost算法 boost算法是基于PAC学习理论(probably approximately correct)而建立的一套集成学习算法(ensemble learning).其根本思想在于通过多个简单的弱分类器,构建出准确率很高的强分类器,PAC学习理论证实了这一方法的可行性.下面关于几种Boost算法的比较,是基于文章<Additive Logistic Regression a Statistical View of Boosting>整理的. 几种boost算法步骤 通常使用最多…
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4581651.html 本例是Sklearn网站上的关于决策树桩.决策树.和分别使用AdaBoost—SAMME和AdaBoost—SAMME.R的AdaBoost算法在分类上的错误率.这个例子基于Sklearn.datasets里面的make_Hastie_10_2数据库.取了12000个数据,其…