原文链接:https://yq.aliyun.com/articles/61941?spm=5176.100239.bloglist.64.UPL8ec 某会议中的一篇演讲,主要讲述深度学习在图像领域中的应用. 作者将图像处理分成了三类:图像增强.图像变换.图像生成. 图像增强:包括分辨率增强.清晰度增强.画面改善.色彩的增强等,并相应的举了几个案例,比如去掉噪声和 马赛克,给图像上色等. 图像变换:从一张图像变换到另一张图像,主要是风格的变换,前段时间很火的一个软件. 图像生成:从无到有,生成…
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较好的价值,而深度学习在大数据场景下更能揭示数据内部的逻辑关系.本文就以大数据作为场景,通过自底向上的教程详述在大数据架构体系中如何应用深度学习这一技术.大数据架构中采用的是hadoop系统以及Kerberos安全认证,深度学习采用的是分布式的Tensorflow架构,hadoop解决了大数据的存储问…
前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的.在小论文中主要研究了关于词性POS对输入序列的注意力机制.同时对比实验采取的是words的self-attention机制. 效果 下图主要包含两列:word_attention是self-attention机制的模型训练结果,POS_attention是词性模型的训练结果. 可以看出,相对于word_attention,POS的注意力机制不仅能够捕捉到评价的aspe…
配置环境总体思路 1.依据python版本选择对应Anaconda版本: 2.依据显卡驱动版本选择对应的CUDA版本: 3.依据CUDA版本选择对应的cudnn和pytorch版本. 一.Anaconda安装 1.下载地址 1.官网  https://www.anaconda.com/products/individual 2.清华源  https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 注:若官网下载速度慢,可用清华源下载:注意操作系统…
目前在计算机视觉中应用的数组维度最多有四维,可以表示为 (Batch_size, Row, Column, Channel) 以下将要从二维数组到四维数组进行代码的简单说明: Tips: 1) 在numpy中所有的index都是从0开始. 2) axis = 0 对Cloumn(Width)操作: axis = 1 对Row(Height)操作: axis = 2 or -1 对Channel(Depth)操作 1. 二维数组 (Row, Column) import numpy as np #…
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/ Overview In this post I want to show you both how you can use the scikit-learn grid search capability and give you a suite of examples that you can copy…
一.如果编译前打算生成支持Matlab的库,则设置MatlabSupport为true之后. 二.记得添加Matlab的安装路径.我的是:D:\Application\DevTools\Matlab   图中的两点缺一不可.…
PaddlePaddle会和Python一样流行吗? 深度学习引擎最近经历了开源热.2013年Caffe开源,很快成为了深度学习在图像处理中的主要框架,但那时候的开源框架还不多.随着越来越多的开发者开始关注人工智能,AI 巨头们纷纷选择了开源的道路:2015年9月Facebook开源了用于在Torch上更快速地训练神经网络的模块,11月Google开源 TensorFlow,2016年1月微软开源CNTK.最近,百度也宣布开源深度学习引擎 PaddlePaddle. 在这场深度学习的框架之争中,…
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
本文作者 Nikolai Yakovenko 毕业于哥伦比亚大学,目前是 Google 的工程师,致力于构建人工智能系统,专注于语言处理.文本分类.解析与生成. 生成式对抗网络-简称GANs-将成为深度学习的下一个热点,它将改变我们认知世界的方式. 准确来讲,对抗式训练为指导人工智能完成复杂任务提供了一个全新的思路,某种意义上他们(人工智能)将学习如何成为一个专家. 举个对抗式训练的例子,当你试图通过模仿别人完成某项工作时,如果专家都无法分辨这项工作是你完成的还是你的模仿对象完成的,说明你已经完…