2021.9.9考试总结[NOIP模拟50]】的更多相关文章

T1 第零题 神秘结论:从一个点满体力到另一个点的复活次数与倒过来相同. 于是预处理出每个点向上走第$2^i$个死亡点的位置,具体实现可以倍增或二分. 每次询问先从两个点同时向上倍增,都转到离$LCA$最近的死亡点上,然后判断,如果现在两点路径上权值大于$k$则答案加$1$. $code:$ 1 #include<bits/stdc++.h> 2 #define int long long 3 using namespace std; 4 5 namespace IO{ 6 inline in…
有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a_i-\frac{(j-i)\times (j-i-1)}{2}]$ 设$j<k$,对$i$来说,$k$优于$j$,当且仅当$2\times i>\frac{2\times(f_j-f_k)+k^2+k-j^2-j}{k-j}$ 斜率优化,$CDQ$分治,先按$a$排序,分治中按$id$排序满足限…
(换个编辑器代码就SB地不自动折叠了.. T1 2A 考察快读的写法. $code:$ T1 #include<bits/stdc++.h> #define scanf SCANF=scanf using namespace std; namespace IO{ inline int read(){ char ch=getchar(); int x=0,f=1; while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); } whi…
T1 路径 考虑每一位的贡献,第$i$位每$2^i$个数会变一次,那么答案为$\sum_{i=1}^{log_2n} \frac{n}{2^i}$. $code:$ 1 #include<bits/stdc++.h> 2 #define int unsigned long long 3 using namespace std; 4 5 namespace IO{ 6 inline int read(){ 7 char ch=getchar(); int x=0,f=1; 8 while(ch&…
T1 Dove玩扑克 考场并查集加树状数组加桶期望$65pts$实际$80pts$,考后多开个数组记哪些数出现过,只扫出现过的数就切了.用$set$维护可以把被删没的数去掉,更快. $code:$ 1 #include<bits/stdc++.h> 2 #define int long long 3 using namespace std; 4 const int NN=1e5+5; 5 int n,m,op,x,y,fa[NN],siz[NN],sum,cnt[NN],nums[NN]; 6…
T1 牛半仙的妹子图 做法挺多的,可以最小生成树或者最短路,复杂度O(cq),c是颜色数. 我考场上想到了原来做过的一道题影子,就用了并查集,把边权排序后一个个插入,记录权值的前缀和,复杂度mlogm挺优秀. 后来发现wlr都是1e9,一个个求前缀和直接炸了,考场上感觉l,r,w差值对答案有影响就没离散化,开了个map记出现的w的前缀和,其他都能O1计算. 这不切了吗?年轻的我如是想到. 于是我领略到了map80倍常数的威力.离散化开数组再带到初值计算就A了. 考场拿了75pts还WA了仨点,据…
ZJ模拟D2就是NB.. T1 Star Way To Heaven 谁能想到这竟是个最小生成树呢?(T1挂分100的高人JYF就在我身边 把上边界和下边界看成一个点和星星跑最小生成树,从上边界开始跑到下边界,一定会出现一条将矩阵纵向一分为二的折线,其中线段都是最小距离,答案就是其中最长的线段的一半. 我直呼NB 由于这是个完全图,kruscal比prim多个log,会炸. code: 1 #include<bits/stdc++.h> 2 #define debug exit(0) 3 us…
\(n=40\)考虑\(meet \;in \;the \;middle\) 某个元素有关的量只有一个时考虑转化为树上问题 对暴力有自信,相信数据有梯度 没了 UPD:写了个略说人话的. T1 最大或 选两个数,其中一个肯定选\(r\).另一个在不卡上界后二进制位全选\(1\). \(code:\) T1 #include<bits/stdc++.h> #define int long long using namespace std; namespace IO{ typedef long l…
T1出了个大阴间题 状压\(DP\),记当前状态的代价和与方案数.状态\(\Theta(2^nn)\),转移\(\Theta(n)\). 发现每个状态的最大值只会是所选集合的\(max\)或加一.于是可以降维.(我太弱考场上没想到 \(code:\) T1 #include<bits/stdc++.h> #define int long long using namespace std; namespace IO{ auto read=[]()->int{ char ch=getchar…
T1 三元组 发现确定\(b,c\)的情况下,\(a\)的值域是连续的.确定\(b\)后\(a+b\)的取值是\([1+b,b+b]\).树状数组维护对每个\(b\)可行的\(c\). 注意取模后取值可能跨越多次值域. \(code:\) T1 #include<bits/stdc++.h> #define int long long using namespace std; namespace IO{ int read(){ char ch=getchar(); int x=0,f=1; w…