ML- 线性回归推导】的更多相关文章

线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Representation 一个实际问题,我们可以对其进行数据建模.在机器学习中模型函数一般称为hypothsis.这里假设h为: 我们从简单的单变量线性回归模型开始学习. 1.2 代价函数Cost Function 代价函数也有很多种,下面的是平方误差Squared error function: 其…
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8D%AE.zip 线性回归 决定系数越接近一那么预测效果越好 对于多元线性回归和一元线性回归推导理论是一致的,只不过参数是多个参数而已 梯度下降 梯度下降法存在局部最小值 太小迭代次数多,太大将无法迭代到最优质 梯度下降发容易到达局部最小值 凸函数使用局部下降法一定可以到全部最小值,所以不存在局部最…
programming-languages学习笔记–第4部分 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} programming-languages学习笔记–第4部分 目录 1. 什么是类型推导 2. ML类型推导 3. 相互递归 4. 用模块管理命名空间 5. 签名 6. 等效实现 1 什么是类型推导 编译时的类型检查,防止一些错误.静态类型语言的特性. 动态类型语言较少或没有做这些检查,有可能在运行时将一个数字认为一个…
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归. 模型 一元回归 以房价预测为例,假设存在这样的训练集: m2 Price 123 2250000 86 1850000 76 1280000 179 2860000 120 2050000 123 2350000 90 13…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
目录 基本形式 梯度下降法中应用正则化项 正规方程中应用正则化项 小试牛刀 调用类库 扩展 正则:正则是一个汉语词汇,拼音为zhèng zé,基本意思是正其礼仪法则:正规:常规:正宗等.出自<楚辞·离骚>.<插图本中国文学史>.<东京赋>等文献. -- 百度百科 基本形式 线性回归模型常常会出现过拟合的情况,由于训练集噪音的干扰,训练出来的模型抖动很大,不够平滑,导致泛化能力差,如下所示: import numpy as np import matplotlib.pyp…
目录 基本形式 求解参数\(\vec\theta\) 梯度下降法 正规方程导法 调用函数库 基本形式 线性回归非常直观简洁,是一种常用的回归模型,大叔总结如下: 设有样本\(X\)形如: \[\begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \cdots &x_n^{(1)}\\ x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)}\\ \vdots & \vdots & \vdo…
转自:http://www.cnblogs.com/zgw21cn/archive/2009/01/07/1361287.html 1.多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型.即  (1.1) 其中为被解释变量,为个解释变量,为个未知参数,为随机误差项. 被解释变量的期望值与解释变量的线性方程为:  (1.2) 称为多元总体线性回归方程,简称总体回归方程. 对于组观测值,其方程组形式为:  (1.3) 即 其矩阵形式为 =+…
线性回归的模型是:y=theta0*x+theta1   其中theta0,theta1是我们希望得到的系数和截距. 下面是代码实例: 1. 用自定义数据来看看格式: # -*- coding:utf-8 -*- from sklearn import linear_model from resys.SplitData import * from numpy import * import matplotlib.pyplot as plt ## 注意: ## python线性回归的数据输入格式…
第一页纸定义了损失函数的样子, theta, X 和 y 的 shape, 以及最终的损失函数向量表现形式. 第二页纸抄上了几个要用到的矩阵求导公式,以及推导过程和结果. 要说明的是:推导结果与theta, X 和 y 的 shape有直接关系.也就是说可能和某教材,某大牛教学视频的结论外貌上不一致,但实质完全相同.…