from:https://www.zhihu.com/question/49346370   Harick     梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入normalization,例如BN.L2 norm等):2.更换参数初始化方法(对于CNN,一般用xavier或者msra的初始化方法):3.减小学习率.减小batch size:4.加入gradient clipping: 发布于 2016-09-04   仁孟     说明训练不收敛了, 学习率…
出现Nan : 说法1: 说法2:说法3:     震荡 : 分析原因:  1:训练的batch_size太小 1.  当数据量足够大的时候可以适当的减小batch_size,由于数据量太大,内存不够.但盲目减少会导致无法收敛,batch_size=1时为在线学习. 2.  batch的选择,首先决定的是下降方向,如果数据集比较小,则完全可以采用全数据集的形式.这样做的好处有两点, 1)全数据集的方向能够更好的代表样本总体,确定其极值所在. 2)由于不同权重的梯度值差别巨大,因此选取一个全局的学…
前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN).今天讨论另一种与它们类似的策略:Weight Normalization(Weight Normalization).Weight Normalization是Batch Normalization的一种变体,与Batch Normalization最大不同点:对神经网络的权值向量W进行参数重写Re…
前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的.在小论文中主要研究了关于词性POS对输入序列的注意力机制.同时对比实验采取的是words的self-attention机制. 效果 下图主要包含两列:word_attention是self-attention机制的模型训练结果,POS_attention是词性模型的训练结果. 可以看出,相对于word_attention,POS的注意力机制不仅能够捕捉到评价的aspe…
使用 谷歌提供了免费的K80的GPU用于训练深度学习的模型.而且最赞的是以notebook的形式提供,完全可以做到开箱即用.你可以从Google driver处打开.或者这里 默认创建的是没有GPU的,我们需要修改,点击"代码执行程序" 然后就会有GPU使用了 挂在Google云盘 执行如下代码 !apt-get install -y -qq software-properties-common python-software-properties module-init-tools…
树莓派是国内比较流行的一款卡片式计算机,但是受限于其硬件配置,用树莓派玩深度学习似乎有些艰难.最近OPENAI为嵌入式设备推出了一款AI框架Tengine,其对于配置的要求相比传统框架降低了很多,我尝试着在树莓派上进行了搭建并成功运行了Mobilenet-SSD. Tengine简介 OAID/Tengine|github Tengine 是OPEN AI LAB 为嵌入式设备开发的一个轻量级.高性能并且模块化的引擎. Tengine在嵌入式设备上支持CPU,GPU,DLA/NPU,DSP异构计…
Chainer是一个专门为高效研究和开发深度学习算法而设计的开源框架. 这篇博文会通过一些例子简要地介绍一下Chainer,同时把它与其他一些框架做比较,比如Caffe.Theano.Torch和Tensorflow. 大多数现有的深度学习框架是在模型训练之前构建计算图. 这种方法是相当简单明了的,特别是对于结构固定且分层的神经网络(比如卷积神经网络)的实现. 然而,现在的复杂神经网络(比如循环神经网络或随机神经网络)带来了新的性能改进和新的应用.虽然现有的框架可以用于实现这些复杂神经网络,但是…
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇. 一.前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言.得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区.尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺.…
训练网络时,通常先对网络的初始权值按照某种分布进行初始化,如:高斯分布.初始化权值操作对最终网络的性能影响比较大,合适的网络初始权值能够使得损失函数在训练过程中的收敛速度更快,从而获得更好的优化结果.但是按照某类分布随机初始化网络权值时,存在一些不确定因素,并不能保证每一次初始化操作都能使得网络的初始权值处在一个合适的状态.不恰当的初始权值可能使得网络的损失函数在训练过程中陷入局部最小值,达不到全局最优的状态.因此,如何消除这种不确定性,是训练深度网络是必须解决的一个问题. momentum 动…
http://www.mooc.ai/course/353/learn?lessonid=2289&groupId=0#lesson/2289 1.AlexNet, VGGNet, GoogleNet, ResNet https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html 1.1 AlexNet: 图像输入224*224*3.11*11滤波…