Flink 实战之从 Kafka 到 ES】的更多相关文章

前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用到了 Flink 自带的 Kafka source connector(FlinkKafkaConsumer).存入到 ES 只是其中一种情况,那么如果我们有多个地方需要这份通过 Flink 转换后的数据,是不是又要我们继续写个 sink 的插件呢?确实,所以 Flink 里面就默认支持了不少 sink,比如…
1 概览 1.1 预定义的源和接收器 Flink内置了一些基本数据源和接收器,并且始终可用.该预定义的数据源包括文件,目录和插socket,并从集合和迭代器摄取数据.该预定义的数据接收器支持写入文件和标准输入输出及socket. 1.2 绑定连接器 连接器提供用于与各种第三方系统连接的代码.目前支持这些系统: Apache Kafka (source/sink) Apache Cassandra (sink) Amazon Kinesis Streams (source/sink) Elasti…
随着人口红利的慢慢削减,互联网产品的厮杀愈加激烈,大家开始看好下沉市场的潜力,拼多多,趣头条等厂商通过拉新奖励,购物优惠等政策率先抢占用户,壮大起来.其他各厂商也紧随其后,纷纷推出自己产品的极速版,如今日头条极速版,腾讯新闻极速版等,也通过拉新奖励,阅读奖励等政策来吸引用户. 对于这类APP,实时风控是必不可少的,一个比较常见的实时风控场景就是防刷接口作弊.刷接口是黑产的一种作弊手段,APP上的各种操作,一般都会对应后台的某个接口,用户操作APP数据就会通过接口上报到后台,但如果黑产通过破解获取…
基于 Flink 1.9 讲解的专栏,涉及入门.概念.原理.实战.性能调优.系统案例的讲解. 专栏介绍 扫码下面专栏二维码可以订阅该专栏 首发地址:http://www.54tianzhisheng.cn/2019/11/15/flink-in-action/ 专栏地址:https://gitbook.cn/gitchat/column/5dad4a20669f843a1a37cb4f 专栏亮点 全网首个使用最新版本 Flink 1.9 进行内容讲解(该版本更新很大,架构功能都有更新),领跑于目…
经常遇到这样的场景,13点-14点的时候flink程序发生了故障,或者集群崩溃,导致实时程序挂掉1小时,程序恢复的时候想把程序倒回13点或者更前,重新消费kafka中的数据. 下面的代码就是根据指定时间戳(也可以换算成时间)开始消费数据,支持到这样就灵活了,可以在启动命令中加个参数,然后再配个守护程序来控制程序. flink代码 import java.util.Properties import org.apache.flink.streaming.api.scala._ import org…
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 2.4字段表达式实例-Java 以下定义两个Java类: public static class WC { public ComplexNestedClass complex; private int count; public int getCount() { return count; } publ…
1 意义 1.1 分层的 APIs & 抽象层次 Flink提供三层API. 每个API在简洁性和表达性之间提供不同的权衡,并针对不同的用例. 而且Flink提供不同级别的抽象来开发流/批处理应用程序 最低级抽象只提供有状态流.它通过Process Function嵌入到DataStream API中.它允许用户自由处理来自一个或多个流的事件,并使用一致的容错状态.此外,用户可以注册事件时间和处理时间回调,允许程序实现复杂的计算. 实际上,大多数应用程序不需要上述低级抽象,而是针对Core AP…
大数据作为未来技术的基石已成为国家基础性战略资源,挖掘数据无穷潜力,将算力推至极致是整个社会面临的挑战与难题. Apache Flink 作为业界公认为最好的流计算引擎,不仅仅局限于做流处理,而是一套兼具流.批.机器学习等多种计算功能的大数据引擎,以其高吞吐低延时的优异实时计算能力.支持海量数据的亚秒级快速响应帮助企业和开发者实现数据算力升级,并成为阿里.腾讯.滴滴.美团.字节跳动.Netflix.Lyft 等国内外知名公司建设实时计算平台的首选. 更好的释放 Flink 的强大算力,需要解决哪…
根据最新的统计显示,仅在过去的两年中,当今世界上90%的数据都是在新产生的,每天创建2.5万亿字节的数据,并且随着新设备,传感器和技术的出现,数据增长速度可能会进一步加快. 从技术上讲,这意味着我们的大数据处理将变得更加复杂且更具挑战性.而且,许多用例(例如,移动应用广告,欺诈检测,出租车预订,病人监护等)都需要在数据到达时进行实时数据处理,以便做出快速可行的决策.这就是为什么分布式流处理在大数据世界中变得非常流行的原因. 如今,有许多可用的开源流框架.有趣的是,几乎所有它们都是相当新的,仅在最…
摘要:ES已经成为了全能型的数据产品,在很多领域越来越受欢迎,本文旨在从数据库领域分析ES的使用. 本文分享自华为云社区<Elasticsearch数据库加速实践>,原文作者:css_blog . 一.方案说明 Elasticsearch主要功能是什么,不同的场景有不同的定位,在日志场景我们可以用ELK生态搭建日志分析系统,在搜索领域ES是当前最热门的搜索引擎.在大数据领域,ES可以对标Hbase提供海量日志的数据仓库:在数据库领域ES可以作为查询分析型的分析型数据库使用.ES已经成为了全能型…