http://poj.org/problem?id=3613 s->t上经过k条边的最短路 先把1000范围的点离散化到200中,然后使用最短路可以使用floyd,由于求的是经过k条路的最短路,跑k-1次"floyd"即可(使用矩阵快速幂的思想). 把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j.令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点).类似地,C*A的第i行第j列就…
题目描述 For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture. Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each…
题意: 求s到e恰好经过n边的最短路 思路: 这题已经被我放了好长时间了. 原来是不会矩阵乘法,快速幂什么的也一知半解 现在终于稍微明白了点了 其实就是把矩阵乘法稍微改改 改成能够满足结合律的矩阵"加法",也就是floyd的步骤. 我就直接把集训队论文放上来吧....(证明它满足结合率的,,,现在我看着还是懵逼的) 希望以后回头看的时候能够看懂吧 注意这里初始化的时候自己到自己的权值不能赋成零..因为这个WA了一会儿 // by SiriusRen #include <cstdi…
Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17171   Accepted: 11999 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequen…
题目:http://poj.org/problem?id=3613 题意就是求从起点到终点的一条恰好经过k条边的最短路: floyd+矩阵快速幂,矩阵中的第i行第j列表示从i到j的最短路,矩阵本身代表一个边数状态: 所以矩阵相乘就是floyd算法,两个矩阵相乘就得到它们所代表的边数相加边数的状态矩阵: 原始矩阵自乘k-1次,过程中取min,就得到答案: 因为只是自乘,所以可以使用快速幂. 代码如下: #include<iostream> #include<cstdio> #incl…
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2))+A^k若k为偶数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2)) 也可以这么二分(其实和前面的差不多):S(2n)=A+A^2+...+A^2n=(1+A^n)*(A+A^2+...+A^n)=(1+A^n)*S(n)S(2n+1…
!:自环也算一条路径 矩阵快速幂,把矩阵乘法的部分替换成Floyd(只用一个点扩张),这样每"乘"一次,就是经过增加一条边的最短路,用矩阵快速幂优化,然后因为边数是100级别的,所以把点hash一下最多剩下200个 #include<iostream> #include<cstdio> #include<algorithm> using namespace std; const int N=205,inf=1e9; int n,m,s,t,g[N],…
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. 在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论起了二叉搜索树.什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树.设key[p]表示结点p上的数值.对于其中的每个结点p,若其存在左孩子lch,则key…
搞懂了什么是矩阵快速幂优化.... 这道题的重点不是DP. /* 题意: 小明要走某条路,按照个人兴致,向前走一步的概率是p,向前跳两步的概率是1-p,但是地上有地雷,给了地雷的x坐标,(一维),求小明安全到达最后的概率. 思路: 把路分成好多段,小明安全走完每一段的概率乘起来就是答案. dp[i]=p*dp[i-1]+(1-p)*dp[i-2]; 参考fib数列构造矩阵进行快速幂. 注意初始化的时候,起点概率看作1,起点减一也就是有地雷的地方概率看作0.//屌丝一开始在这里没搞明白. */ #…
题目传送门 /* 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了.效率很高啊 */ #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using namespace std; ; const int INF = 0x3f3f3f3f; ; struct Mat { ][]; }; Mat multi_mod(Mat a, Mat…