[C2P2] Andrew Ng - Machine Learning】的更多相关文章

##Linear Regression with One Variable Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price prediction, present the notion of a cost function, and introduce the gradi…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/ar…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 2:Linear Regression with Multiple Variables笔记:http://blog.csdn.net/ironyoung…
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in practice, and discuss the best ways to evaluate performance of the le…
1. 机器学习的定义:Machine learning is programming computers to optimize a performance criterion(优化性能标准) using example data or past experience. 2. 监督学习(Supervised Learning):The term supervised learning refers to the fact that we gave the algorithm a data set…
About this Course Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly i…
课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computational biology.搜索引擎Google/Bing. 自动直升机autonomous helicopter.自然语言处理Natural Language Processing 2.ML的定义 3.目前ML的分类 监督学习Supervised Learning.无监督学习Unsupervised…
机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 的,看完以后才发现有第二版的更新,2016.建议阅读最新版,有能力的建议阅读英文版,中文翻译有些地方比较别扭(但英文版的书确实是有些贵). 我读书的目的:泛读主要是想窥视他人思考的方式. 作者写书的目标:面向初学者,但有时间看看也不错.作者说"我希望它能激发你的好奇心,并足以让你保持渴望,不断探索…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcement learning Structured prediction Feature engineering Feature learning Online learning Semi-supervised learning Unsupervised learning Learning to rank…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一个矩阵或向量 随机矩阵方阵生成 magic矩阵生成(每行每列相加和相同) 获取矩阵的维度size 获取矩阵的最大维度length 矩阵操作.获取单个元素.行.列.赋值 矩阵append.矩阵元素放到一个列向量中 矩阵运算 矩阵乘法 A*C:根据矩阵乘法公式相乘. A .* B:矩阵元素对应相乘. 矩…
我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ tensorflow:http://tensorflow123.com…
Machine Learning - Andrew Ng - Coursera Contents 1 Notes 1 Notes What is Machine Learning? Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being exp…
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machine-learning Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has g…
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,…
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml  (一)K-means聚类算法 Input data:未标记的数据集,类别数K: 算法流程: 首先随机选择K个点,作为初始聚类中心(cluster centroids): 计算数据集中每个数据与…
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.coursera.org/course/ml 大家对于支持向量机(SVM)可能会比较熟悉,是个强大且流行的算法,有时能解决一些复杂的非线性问题.我之前用过它的工具包libsvm来做情感分析的研究,感觉效果还不错.NG在进行SVM的讲解时也同样建议我们使用此类的工具来运用SVM. (一)优化目标(Opt…
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可见,如购物推荐.影视推荐等.课程链接为:https://www.coursera.org/course/ml (一)异常检测(Anomaly Detection) 举个栗子: 我们有一些飞机发动机特征的sample:{x(1),x(2),...,x(m)},对于一个新的样本xtest,那么它是异常数…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现: Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization 损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化 Mode…
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I…
最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分NG较为系统的概括了Machine learning的一些基本概念,也让我接触了一些新的名词,这些名词在后续课程中会频繁出现: Machine Learning Supervised Learning Unsupervised Learning Regression Problem Classifi…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
Andrew Ng机器学习课程11之使用machine learning的建议 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 2015-9-28 艺少…
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written by me, my notes about video course: https://github.com/Yao-Yao/CS229-Machine-Learning Contents: supervised learning Lecture 1 application field, pre-…
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解决不了或效果不佳时人工神经网络方法才能显示出其优越性.尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断.特征提取和预测等问题,人工神经网络往往是最有利的工具.另一方面, 人工神经网络对处理大量原始数据而不能用规则或公式描述的问题, 表现出极大的灵活性和自适应性. 神经网络模型解决问题的…