[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的. 小G给每首诗定义了一个行标准长度(行的长度为一行中符号的总个数),他希望排版后每行的长度都和行标准长度相差不远. 显然排版时,不应改变原有的句子顺序,并且小G不允许把一个句子分在两行或者更多的行内. 在满足上面两个条件的情况下,小G对于排版中的每…
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的队列来维护,表示在(l,r)(l,r)(l,r)这个区间当前的决策都是ididid,然后在每次求决策点的时候弹一下队头,求出当前解之后我们更新一下队尾就行了. 代码: #include<bits/stdc++.h> #define N 100005 #define ld long double u…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1563 分析: 首先可得朴素的方程:f[i]=min{f[j]+|s[j]-j-s[i]-i-L+1|^P} j=0..i-1 这种1D/1D的动态规划要优化肯定只有决策单调性优化,打个表发现的确如此,然后就愉快的O(nlogn)了…
LINK 因为是图片题就懒得挂了 简要题意:有n个串,拼接两个串需要加一个空格,给你l和p,问你拼接后每个串的总长减l的绝对值的p次方的最小值 首先打表发现一下这题是决策单调的对于所有数据都成立就当他一定成立了 然后网上有神仙用四边形不等式证明了这个东西LINK 我就懒得不会证明了 然后考虑用一个双向的队列维护出每个决策点对应的单调区间 然后保证所有区间一定是连续的 就构成了所有dp的转移区间 其实和bzoj2216非常像 代码都差不多,直接维护就可以了 最后上DP式子: dp[i] = dp[…
传送门 题解 决策单调性是个啥……导函数是个啥……这题解讲的是啥……我是个啥…… //minamoto #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define LD long double #define calc(i,j) f[j]+qpow(abs(s[i]-s[j]-L)) using namespace std; inline int read(){…
题意:给定N,L,P,求f[N] sum[i]递增,L<=3e6,P<=10 思路:四边形不等式的证明见https://www.byvoid.com/zhs/blog/noi-2009-poet #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned int uint; typedef unsigned long long ull; typedef long double…
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最小代价.然后有个正常的dp方程. $f[i]=min \{ f[j]+|sum_i-sum_j-1-L|^p \} $ 然后观察发现带高次项,不好斜率优化或单调队列,考虑有没有决策单调性.本来是可以打表证明的,然后拍一下.然而我杠一波瞎证了一下单调性. $证明:$ $已知f[j]+|sum_i-su…
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 设\(w_{ij} = (sum_i - sum_j - 1 - L)^P\) 那么化成1D1D的标准形式 $ f_i = min(f_j + w_{i,j}) $ 发现w满足四边形不等式 证明可以看这里 https://www.byvoid.com/zhs/blog/noi-200…
P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f(j, i+1) + f(j+1, i) >= f(j, i) + f(j+1, i+1) 所以dp[i]具有决策单调性 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include<bits…
1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),cost(i,j)=(sum[i]-sum[j])p 然后有决策单调性,就可以二分+队列了.注意两个字符串之间还有一个空格,所以长度+1,很多字符串合起来后,总的长度还要-1,最后一个没空格. 证明?byvoid luogu输出方案,加上后一直过不了,g,nxt数组是输出方案的部分 代码: #inclu…