【刷题】BZOJ 4176 Lucas的数论】的更多相关文章

bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i=1}^N \sum_{j=1}^N f(ij)&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j}[gcd(x,y)=1]\\&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j} \sum_{d|g…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{i\mid n}\sum_{j\mid m}[(i,j)=1]\) 反演得到 \[ \sum_{d=1}^n \mu(d) (g(\frac{n}{d}))^2 \\ g(n) = \sum_{i=1}^n \sigma_0(i) \] 杜教筛\(\mu \ \sigma_0\)的前缀和 当然和前面…
4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值:   其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Ou…
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N",其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4176 题解: 莫比乌斯反演,杜教筛 首先有这么一个结论: 令d(n)表示n的约数的个数(就是题目中的f(n)),则有 $$d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$$ ●BZOJ 3994 [SDOI2015]约数个数和也用到了这个东西. 那么就下来接直接进行求ANS的式子的推导: $$\begin{aligned}ANS&=\sum_{n=1}^{N…
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) N<=109N<=10^9N<=109 题目分析 有这样一个结论 d(ij)=∑x∣i∑y∣j[(x,y)==1]d(ij)=\sum_{x|i}\sum_{y|j}[(x,y)==1]d(ij)=x∣i∑​y∣j∑​[(x,y)==1]这道题就是下面这道题的数据增强版,那么这个结论的证明…
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其贡献,可以发现所有被统计的(a,b)乘积的质因数分解形式正好和i,j的所有因数的质因数分解形式一一对应,不重不漏(对于b中质因数指数不为0对应的就是i中指数+b中指数的情况,对于b中质因数指数为0的情况对应i中指数的情况). 然后就有如下的推导: 对于这个式子,整个数字分段来算,n/d一共sqrt(n)种…
首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] \[ \sum_{p=1}^{n}\sum_{q=1}^{n}[gcd(p,q)==1]\left \lfloor \frac{n}{p} \right \rfloor\left \lfloor \frac{n}{q} \right…
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则:每个溶洞和其他某些溶洞有暗道相连.两个溶洞之间可能有多条道路,也有可能没有,但没有一条暗道直接从自己连到自己.参赛者需要统一从一个大溶洞出发,并再次回到这个大溶洞. 如果就这么点限制,那么问题就太简单了,可是举办方又提出了一个条件:不能经过同一条暗道两次.这个条件让大家犯难了.这该怎么办呢? 到了大…