Luogu P4280 [AHOI2008]逆序对】的更多相关文章

题目描述 甩个链接就走 题解 先预处理出每个位置上分别填上 1~k 的数的逆序对的数量的前缀和与后缀和 (不用管原来有值的,统计时不计入答案就行了) (有点绕,看代码应该能懂) 然后枚举每个 -1 的位置填的数 设 dp[i][j] 表示填到第 i 个 -1 填且第 i 个数为 j 的当前最小逆序对数量 sum1[i][j] 表示第 i 个数 (不是第 i 个 -1 !!!)填 j 时的逆序对前缀和 sum2[i][j] 表示第 i 个数填 j 时的逆序对后缀和 num[i] 表示第 i 个 -…
传送门 有一个不会证明的贪心:从左到右考虑每一个位置,然后在每一个位置都贪心选取能让该位置构成的逆序对最少的数.判断逆序对的话只要记一下前缀小于等于某数的总数和后缀小于等于某数的总数就行了 //minamoto #include<bits/stdc++.h> #define rint register int #define inf 0x3f3f3f3f #define ll long long using namespace std; #define getc() (p1==p2&&…
1831: [AHOI2008]逆序对 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 341  Solved: 226[Submit][Status] Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为一个“逆序对”.你数一数下面的数字里有多少个逆序对,你就知道Y岛离这里的距离…
[BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\),上一个填的数是\(j\)的最小逆序对数. 随便拿什么维护一下转移就好了. #include<iostream> #include<cstdio> using namespace std; #define MAX 10010 inline int read() { int x=0;bo…
1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为一个“逆序对”.你数一数下面的数字里有多少个逆序对,你就知道Y岛离这里的距离是多少千米了. 比如说,4 2 1 3 3里面包含了5个逆序对:(4, 2), (4, 1), (4, 3), (4, 3), (2, 1). 可惜的是,由于年…
题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多少 \(n<=10000,k<=100\) 题解 结论: 填的数是不下降的 证明: 假设相邻的两个-1的位置是(x,y)(a[x]<=a[y]); 如果交换x,y; 对1-x和y-n中的数显然没有影响. 对x-y中大于max(a[x],a[y])和小于min(a[x],a[y])的数显然也没…
这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #include<iostream> #include<cstdio> #include<map> #include<cmath> #include<algorithm> #define rep(i,l,r) for (int i=l;i<=r;i++)…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到了第$i$位,最后一个$-1$上填的数字是$j$的最少逆序对数量. 如果当前位置是$-1$: ${f[i][j]=min\left \{ f[i-1][x] |x\leq j \right \}+ma[i][j+1]+mi[i][j-1]}$ 如果当前位是确定的数字.${f[i][j]=f[i-1]…
被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对,感性理解好像是单调不降更优,这里还是严谨证明一下吧 考虑一下树状数组求逆序对的过程,显然就是求出每一个数前面有多少个比它大的数 这张图好丑啊 设\(A<B\),\(x\)表示那段绿色区间里大于\(A\)的数,\(y\)表示绿色区间里大于\(B\)的数,\(a\)表示蓝色区间里大于\(A\)的数,\…
link 我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i,j]$之间,则$a_i<a_j$对答案产生的贡献更小,则其实每个不同位置的$-1$其实是互不影响的,所以就可以用$dp$实现 设$dp(i,j)$表示这是从右往左数第$i$个$-1$,这里填j的最小逆序对数(这里的逆序对是只与$-1$有关的,其他的单算) 则$dp(i,j)=min(dp(i-1,p)…