Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 论文下载 黄伟林主页 , 乔宇,汤晓欧 所有作者 方法概括 解决问题:单词识别 主要流程:maxout版的CNN提取特征,RNN(LSTM)进行分类,CTC对结果进行调整.整个流程端到端训练和测试,和白翔的CRNN(参考文献1)方法几…
论文链接:https://arxiv.org/abs/1412.7062 摘要 该文将DCNN与概率模型结合进行语义分割,并指出DCNN的最后一层feature map不足以进行准确的语义分割,DCNN具有很强的空间不变性,因此比较擅长高层次的任务.该文通过在DCNN的最后一层添加一层CRF用来克服定位不准的问题.该文通过引入空洞算法来提高模型在GPU上的运行速度. 介绍 该文的一个主题是采用进行end-to-end训练的DCNN,相比传统的依赖,SIFT或者HOG等人工设计的特征会产生喜人的分…
Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrapping 作者和代码 关键词 文字检测.多方向.FCN.$$xywh\theta$$.multi-stage.border 方法亮点 采用Bootstrapping进行数据扩增 增加border-loss 方法概述 本文方法是直接回归的方法,除了学习text/non-text分类任务,四个点到边界的回归…
相关论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 概论 用于人脸检测和对齐. 本文提出的unified cascaded CNNs by multi-task learning,包含三个阶段: 1) 利用一个浅层的CNN快速产生候选窗口 2) 利用一个更复杂的CNN排除掉大量非人脸窗口 3) 利用一个更强大的CNN进一步改善结果,并输出人脸关键点位置. 本文的贡献: 1…
前面曾提到过CTPN,这里就学习一下,首先还是老套路,从论文学起吧.这里给出英文原文论文网址供大家阅读:https://arxiv.org/abs/1609.03605. CTPN,以前一直认为缩写一般是从题目的开始依次排序选取首字母的,怕是孤陋寡闻了,全称是“ Detecting Text in Natural Image with Connectionist Text Proposal Network”,翻译过来是基于连接Proposal(直译太难受!!)网络的文本检测. 作者在论文中描述了…
论文链接:https://aclweb.org/anthology/P18-1031 对文章内容的总结 文章研究了一些在general corous上pretrain LM,然后把得到的model transfer到text classiffication上 整个过程的训练技巧. 这些技巧的切入点是learning rate. 主要是三个: (1)discriminative fine-tuning (其中的discriminative 指 fine-tune each layer with d…
Han Hu--[ICCV2017]WordSup_Exploiting Word Annotations for Character based Text Detection 作者和代码 caffe检测torch7识别代码 关键词 文字检测.多方向.直接回归.$$xywh\theta$$ .multi-stage.监督学习 方法亮点 采用单词.文本行的标注信息进行监督学习来辅助字符检测 在ICDAR2013数据集上F值90+,后来的方法能超过这篇文章的寥寥无几 方法概述 利用Faster RC…
[code] [pdf] 白盒 beam search 基于梯度 字符级…
论文原址:https://arxiv.org/abs/1811.07275 摘要 一个训练好的网络模型由于其模型捕捉的特征中存在大量的重叠,可以在不过多的降低其性能的条件下进行压缩剪枝.一些skip/Dense网络结构一定程度上减弱了重叠的现象,但这种做法引入了大量的计算及内存.本文从更改训练方式的角度来解决上述问题.本文发现,通过对模型进行临时裁剪,并对一定的filter进行恢复,重复操作,可以减少特征中的重叠效应,同时提高了模型的泛化能力.本文证明当前的压缩标准在语义上并不是最优的,本文引入…
感知野的概念尤为重要,对于理解和诊断CNN网络是否工作,其中一个神经元的感知野之外的图像并不会对神经元的值产生影响,所以去确保这个神经元覆盖的所有相关的图像区域是十分重要的:需要对输出图像的单个像素进行预测的任务,使每一个输出像素具有一个比较大的感知野是十分重要的,在做预测试时,每一个关键的信息就不会被遗漏. 增大感知野的方法: 理论上可以通过搭建更多的层的网络实现感知域的线性增加,靠着卷积过滤器的增加: 也可以使用下采样的方法,池化,增加感知域,目前通常都结合了这两种技术: 堆叠不同层的con…