tensorflow 模型压缩】的更多相关文章

模型压缩 为了将tensorflow深度学习模型部署到移动/嵌入式设备上,我们应该致力于减少模型的内存占用,缩短推断时间,减少耗电.有几种方法可以实现这些要求,如量化.权重剪枝或将大模型提炼成小模型. 在这个项目中,我使用了 TensorFlow 中的量化工具来进行模型压缩.目前我只使用权重量化来减小模型大小,因为根据 Mac 上的测试结果,完整 8 位转换没有提供额外的好处,比如缩短推断时间.(由于 requant_range 中的错误,无法在 Pixel 上运行完整的 8 位模型).由于 8…
近日,TensorFlow模型优化工具包又添一员大将,训练后的半精度浮点量化(float16 quantization)工具. 有了它,就能在几乎不损失模型精度的情况下,将模型压缩至一半大小,还能改善CPU和硬件加速器延迟. 这一套工具囊括混合量化,全整数量化和修剪. 如何量化模型,尽可任君挑选. 压缩大小,不减精度 双精度是64位,单精度是32位,所谓的半精度浮点数就是使用2个字节(16位)来存储. 比起8位或16位整数,半精度浮点数具有动态范围高的优点:而与单精度浮点数相比,它能节省一半的储…
本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域.CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端的处理方法,还大幅度地刷新了各个图像竞赛任务的精度,更甚者超越了人眼的精度(LFW人脸识…
1,概述 模型量化应该是现在最容易实现的模型压缩技术,而且也基本上是在移动端部署的模型的毕竟之路.模型量化基本可以分为两种:post training quantizated和quantization aware training.在pyrotch和tensroflow中都提供了相应的实现接口. 对于量化用现在常见的min-max方式可以用公式概括为: $r = S (q - Z)$ 上面式子中q为量化后的值,r为原始浮点值,S为浮点类型的缩放系数,Z为和q相同类型的表示r中0点的值.根据: $…
模型优化工具包是一套先进的技术工具包,可协助新手和高级开发者优化待部署和执行的机器学习模型.自推出该工具包以来,  我们一直努力降低机器学习模型量化的复杂性 (https://www.tensorflow.org/lite/performance/post_training_quantization). 最初,我们通过"混合运算"为训练后量化提供支持,该方法可量化模型参数(例如权重),但以浮点方式执行部分计算.今天,我们很高兴宣布推出一款新工具:训练后整型量化.整型量化是一种通用技术,…
翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ 在这篇tensorflow教程中,我会解释: 1) Tensorflow的模型(model)长什么样子? 2) 如何保存tensorflow的模型? 3) 如何恢复一个tensorflow模型来用于预测或者迁移学习? 4) 如何使用预训练好的模型(imported pretrained model…
转载:https://cloud.tencent.com/developer/article/1009979 tensorflow模型的格式通常支持多种,主要有CheckPoint(*.ckpt).GraphDef(*.pb).SavedModel. 1. CheckPoint(*.ckpt) 在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示: 这种格式文件是由 tf.train.Saver() 对象调用 saver.save()…
平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多,所以也就从tensorflow上下手了. 下面内容主要参考&翻译: https://www.tensorflow.org/mobile/?hl=zh-cn https://github.com/tensorflow/models/blob/master/research/object_detect…
TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphDef 完整转换器参考 计算节点兼容性 Graph 可视化工具 3 在移动端app,使用TensorFlow Lite模型推理 android IOS Raspberry PI 使用一个TensorFlow Lite 模型在你的移动端app需要受到需要约束:首先,你必须有训练好的模型(预训练/自己训练…
我们刚接到一个项目时,一开始并不是如何设计模型,而是去先跑一个现有的模型,看在项目需求在现有模型下面效果怎么样.当现有模型效果不错需要深入挖掘时,仅仅时跑现有模型是不够的,比如,如果你要在嵌入式里面去实现,目前大多数模型大小和计算量都不满足,这就产生了模型压缩和剪枝. 模型压缩常做的是将模型从float变为int8,这不仅带来了模型参数空间上的减少,同时,是的很多较小的参数直接变为0,是的模型压缩可以变得比较小(一般是缩小到原来的20),但是这种方式下,压缩后的模型不一定能work,还得调整.…
原文地址:搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型 0x00 环境 OS: Ubuntu 1810 x64 Anaconda: 4.6.12 Python: 3.6.8 TensorFlow: 1.13.1 OpenCV: 3.4.1 0x01 基础环境配置 Anaconda 下载地址: Anaconda-4.6.12-Linux 本文中安装位置为 /usr/local/anaconda3 修改默认的 python 版本为 3.6 cond…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
tensorflow模型可以利用tf.train.Saver类保存成文件.一个模型包含下面四个文件. meta文件 存储计算图的protobuf. data-00000-of-00001文件和index文件 存储权值和偏置的二进制文件. checkpoint文件 存储模型checkpoint信息的文本文件.…
原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自动机器学习.机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享.Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学…
https://zhuanlan.zhihu.com/p/42214716 本文是“基于Tensorflow高阶API构建大规模分布式深度学习模型系列”的第五篇,旨在通过一个完整的案例巩固一下前面几篇文章中提到的各类高阶API的使用方法,同时演示一下用tensorflow高阶API构建一个比较复杂的分布式深度学习模型的完整过程. 文本要实现的深度学习模型是阿里巴巴的算法工程师18年刚发表的论文<Entire Space Multi-Task Model: An Effective Approach…
该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大的帮助,因此我决定把它记录下来. 原文链接A quick complete tutorial to save and restore Tensorflow models–by ANKIT SACHAN (英文水平有限,有翻译不当的地方请见谅) 在本教程中,我将介绍: - tensorflow模型是什…
tensorflow模型量化/DATA/share/DeepLearning/code/tensorflow/bazel-bin/tensorflow/tools/graph_transforms/transform_graph \--in_graph=./model_resnet100.pb \--out_graph=/tmp/model_resnet100_quantized_graph.pb \--inputs=input0 \--outputs=fcblock/fc1/add_1 \--…
TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name="w1-name") w2 = tf.Variable(tf.constant(3.0, shape=[1]), name="w2-name") a = tf.placeholder(dtype=tf.float32, name="a-name")…
主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部分参数.加载指定参数 tensorflow从已经训练好的模型中,恢复(指定)权重(构建新变量.网络)并继续训练(finetuning) Tensorflow 模型持久化 Model Persistence…
使用docker部署模型的好处在于,避免了与繁琐的环境配置打交道.使用docker,不需要手动安装Python,更不需要安装numpy.tensorflow各种包,直接一个docker就包含了全部.docker的方式是如今部署项目的第一选择. 一.docker用法初探 1.安装 docker安装需要两个命令: sudo apt-get install docker sudo apt-get install docker.io 好的学习资料不必远求 docker --help docker run…
参考: TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式 TensorFlow 模型保存与恢复 snpe tensorflow 模型前向传播 保存ckpt  tensorbard查看 ckpt转pb  pb 转snpe dlc 实例 log文件 输入节点 图像高度 图像宽度 图像通道数 input0 6,6,3 输出节点 --out_node add snpe-tensorflow-to-dlc --graph ./simple_snpe_log/model200.…
使用TensorFlow Serving优化TensorFlow模型 https://www.tensorflowers.cn/t/7464 https://mp.weixin.qq.com/s/qOy9fR8Zd3SufvsMmLpoGg…
使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in…
最近由于要将训练好的模型移植到硬件上,因此需要将TensorFlow转为caffe模型. caffe模型需要两个文件,一个是定义网络结构的prototxt,一个是存储了参数的caffemodel文件.只要生成这两个文件,caffe模型就算转好了. 在模型转换的过程中,我主要参考了https://github.com/lFatality/tensorflow2caffe. 首先根据已有的tensorflow模型定义caffe模型需要的网络结构prototxt文件,这个可以参考一些现有的protot…
一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt"),实际在这个文件目录下会生成4个人文件: checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model.…
在这篇 TensorFlow 教程中,我们将学习如下内容: TensorFlow 模型文件是怎么样的? 如何保存一个 TensorFlow 模型? 如何恢复一个 TensorFlow 模型? 如何使用一个训练好的模型进行修改和微调? 1. TensorFlow 模型文件 在你训练完一个神经网络之后,你可能需要将这个模型保存下来,在后续实验中使用或者进行生产部署.那么,TensorFlow 模型文件长什么样呢?TensorFlow 模型主要包含我们已经训练好的网络设计(计算图)和网络参数.因此,T…
我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用.而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦. 一.基本方法 网上搜索tensorflow模型保存,搜到的大多是基本的方法.即 保存 定义变量 使用saver.save()方法保存 载入 定义变量 使…
本文介绍如何在C++环境中部署Keras或TensorFlow模型. 一.对于Keras, 第一步,使用Keras搭建.训练.保存模型. model.save('./your_keras_model.h5') 第二步,冻结Keras模型. from keras.models import load_modelimport tensorflow as tffrom tensorflow.python.framework import graph_iofrom keras import backen…
ML.NET在不久前发行了1.0版本,在考虑这一新轮子的实际用途时,最先想到的是其能否调用已有的模型,特别是最被广泛使用的Tensorflow模型.于是在查找了不少资料后,有了本篇示例.希望可以有抛砖引玉之功. 环境 Tensorflow 1.13.1 Microsoft.ML 1.0.0 Microsoft.ML.TensorFlow 0.12.0 netcoreapp2.2 训练模型 这里为了方便,利用Keras的API减少所需的代码. import tensorflow as tf mni…
论文名称:MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning 论文地址:https://arxiv.org/abs/1903.10258 开源代码:https://github.com/megvii-model/MetaPruning 目录 导语 简介 方法 PruningNet Training Pruned-Network Search 实验 Comparisons with state-of-the…