题目描述 组合数 C_n^mCnm​ 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种选择方法.根据组合数的定义,我们可以给出计算组合数 C_n^mCnm​ 的一般公式: C_n^m = \frac{n!}{m!(n-m)!}Cnm​=m!(n−m)!n!​ 其中 n! = 1 × 2 × · · · × n.(特别的,当 n = 0 时, n! = 1 ,当 m > n 时, C_…
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{i-1,j}\) \(dp_{i,0},dp_{i,1},dp_{i,2}.....dp_{i,k-1}\) \(\Longrightarrow\) \(dp_{i+1,0},dp_{i+1,1},dp_{i+1,2}.....dp_{i+1,k-1}\) 仔细想想,你能构造出矩阵的 #includ…
P3747 [六省联考2017]相逢是问候 题目描述 \(\text {Informatik verbindet dich und mich.}\) 信息将你我连结. \(B\) 君希望以维护一个长度为 \(n\) 的数组,这个数组的下标为从 \(1\) 到 \(n\) 的正整数. 一共有 \(m\) 个操作,可以分为两种: \(0\) \(l\) \(r\) 表示将第 \(l\) 个到第 \(r\) 个数\(( a_l,a_{l+1},...a_r )\)中的每一个数\(a_i\)替换为 \(…
传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[i]$表示从$i$个正确选项中选择一个正确的变为$i-1$个的期望次数 那么$$f[i]=\frac{i}{n}+(1-\frac{i}{n})*(1+f[i+1]+f[i])$$ 其中$\frac{i}{n}$表示一次就选了正确的选项,$(1-\frac{i}{n})$表示按错了,那么会增加一个正…
题目描述 有 nnn 位同学,每位同学都参加了全部的 mmm 门课程的期末考试,都在焦急的等待成绩的公布. 第 iii 位同学希望在第 tit_iti​ 天或之前得知所有课程的成绩.如果在第 tit_iti​ 天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程公布成绩,每等待一天就会产生 CCC 不愉快度. 对于第 iii 门课程,按照原本的计划,会在第 bib_ibi​ 天公布成绩. 有如下两种操作可以调整公布成绩的时间: 将负责课程 XXX 的部分老师调整到课程 YYY,调整之后…
传送门 题解 这几道都是上周llj讲的题,题解也写得十分好了,所以直接贴了几个链接和代码. //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<vector> #include<queue> #include<cmath> #include<…
传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<vector> #include<cstdio> #include<queue> #include<cmath> #define For(i,a,b) for(int i=(a);i<=(b);i++) #de…
传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<vector> #include<cstdio> #include<queue> #include<cmath> ,mod=; #define For(i,a,b) for(int i=(a);i<=(b);i…
传送门 题解 扩展欧拉定理. 线段树维护,已经全改到底了的节点就不管,不然暴力修改下去. //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<vector> #include<cstdio> #include<queue> #include<cmath> +; #define Fo…
正解:网络流 解题报告: 传送门$QwQ$ 这道题好烦昂,,,就给了好多变量,,,但仔细读一遍题还是能$get$的所以我就不再提取一遍题目大意辣$QwQ$? 显然考虑建两排点,一排收益一排支出然后最小流呗? 考虑连边?寿司和编号之间连$inf$嘛,编号和$T$连$m\cdot x^{2}$嘛,然后关于这个$c\cdot x$显然可以归结到每个寿司上不用通过编号背锅嘛$QwQ$.最后关于那个区间的考虑强制性就说如果选了$[l,r]$就还强制选$[l,r-1]$和$[l+1,r]$所以连个$inf$…