主要内容: 一.算法概述 二.距离度量 三.k值的选择 四.分类决策规则 五.利用KNN对约会对象进行分类 六.利用KNN构建手写识别系统 七.KNN之线性扫描法的不足 八.KD树 一.算法概述 1.k近邻算法,简而言之,就是选取k个与输入点的特征距离最近的数据点中出现最多的一种分类,作为输入点的类别. 2.如下面一个例子,有六部电影,可用“打斗镜头”和“接吻镜头”作为每一部电影的特征值,且已知每一部电影的类别,即“爱情片”还是“动作片”.此外,还有一部电影,只知道其特征,但不知道其类别.如下:…
1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数 def createDataSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels ##print(create…
下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @author: Administrator """ from numpy import * #NumPy import operator #运算符模块 def createDataSet(): #这个只是导入数据的函数 group=array([[1.0,1.1],[1.0,1.0]…
笔者本人是个初入机器学习的小白,主要是想把学习过程中的大概知识和自己的一些经验写下来跟大家分享,也可以加强自己的记忆,有不足的地方还望小伙伴们批评指正,点赞评论走起来~ 文章目录 1.k-近邻算法概述 1.1 距离度量 1.2 k值的选择 1.3 分类决策规则 2.k-近邻算法实现 2.1 实现方法 2.2 k-近邻法python3.6实现 2.2.1 k-近邻法实现程序 2.2.2 classify0(inX, dataSet, labels, k)中部分方法注释 2.2.3 如何测试分类器…
文章目录 1.改进约会网站匹配效果 1.1 准备数据:从文本文件中解析数据 1.2 分析数据:使用Matplotlib创建散点图 1.3 准备数据:归一化特征 1.4 测试算法:作为完整程序验证分类器 1.5 使用算法:构建完成可用系统 2.手写识别系统 2.1 准备数据:将图像转换为测试向量 2.2 测试算法:使用k-近邻算法识别手写数字 在上一篇文章中我们得到了基于欧式距离.多数表决规则,实现方法采用线性搜索法的k-近邻法classify0(inX, dataSet, labels, k),…
<Dom Scripting>学习笔记 第二章 Javascript语法 本章内容: 1.语句. 2.变量和数组. 3.运算符. 4.条件语句和循环语句. 5.函数和对象. 语句(statements) 注释(comments) 方法: 1.// Note to self: comments are good. 2./* Note to self: comments are good */ 3.<!— This is a comment in JavaScript. (In HTML,…
The Road to learn React书籍学习笔记(第二章) 组件的内部状态 组件的内部状态也称为局部状态,允许保存.修改和删除在组件内部的属性,使用ES6类组件可以在构造函数中初始化组件的状态.构造函数只会在组件初始化的时候调用一次 类构造函数 class App extends Component{ constructor(props){ super(props); } } 使用ES6编写的组件有一个构造函数时,需要强制地使用 super() 方法, 因为这个 App组件 是 Com…
[HeadFrist-HTMLCSS学习笔记]第二章深入了解超文本:认识HTML中的"HT" 敲黑板!!! 创建HTML超链接 <a>链接文本(此处会有下划线,可以单击跳转)<\a> ,使用<a>元素创建一个超文本链接,链接到另一个Web页面 <a href="XXX.html(此处是链接的目标文件)">链接文本<\a>,href属性高速浏览器连接的目标文件 属性的写法:属性名="属性值"…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分类 4.存储决策树 通过决策树原理及相关概念细节我们知道,决策树的学习算法主要包括3个步骤:特征选择.决策树生成算法.决策树剪枝,我们按照这个思路来一一实现相关功能. 本文的实现目前主要涉及特征选择.ID3及C4.5算法.剪枝及CART算法暂未涉及,后期补上. 1.ID3及C4.5算法基础 前面文章…