poj1966 求顶点连通度】的更多相关文章

Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4563   Accepted: 2118 Description The interconnection of the relays in a cable TV network is bi-directional. The network is connected if there is at least one interconnecti…
题意:给出一个n个节点和m条边的图,求该图的顶点连通度. 分析: 顶点连通度的求解可以转换为网络最大流问题. (1)原图G中的每个顶点v变成网络中的两个顶点v‘和v’‘,顶点v’至v''有一个条弧(有向边)连接,弧容量为1: (2)原图G中的每条边e=uv,在网络中有两条弧e'=u''v',e''=v''u'与之对应,e'弧容量为oo(无穷) ,e''弧容量为oo(无穷) (3)A''为源点,B'为汇点,枚举所有汇点,求最小割最小的那个 AC代码如下: #include<cstdio> #in…
链接:http://poj.org/problem?id=1966 题意:一个无向图,n个点,m条边,求此图的顶点连通度. 思路:顶点连通度,即最小割点集里的割点数目.一般求无向图顶点连通度的方法是转化为网络流的最小割. 建图: (1)原图每一个点i拆点,拆为i'和i'',i'到i''连一条弧容量为1. (2)对于原图中存在的边(u, v),连两条弧(u', v')和(v'', u'),容量INF. (3)找一个源点i.这个点不能和其它全部点都相邻否则无法找到最小割,以这个点i''为源点,枚举汇…
Cable TV Network 题目抽象:给出含有n个点顶点的无向图,给出m条边.求定点联通度   K 算法:将每个顶点v拆成 v'   v''  ,v'-->v''的容量为1.           对于原图中的边(u,v)   连边   u''--->v'    v''-->u'.    求每对定点的P(u,v);以u为源点,v为汇点. 我们只需固定一个顶点,枚举其它汇点. 1 #include <iostream> 2 #include <cstdio> 3…
树中求顶点A和B共同祖先 题目: 给定一颗树,以及两个顶点A和B,求最近的共同祖先,和包含的子顶点个数? 比如:给定如下图的树,以及顶点13和8,则共同祖先为3,以3为root的子顶点共有8个…
                           Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4678   Accepted: 2163 Description The interconnection of the relays in a cable TV network is bi-directional. The network is connected if there is…
题目链接 给一个图, n个点m条边, 求至少去掉多少个点可以使得图不再联通.随便指定一个点为源点, 枚举其他点为汇点的情况, 跑网络流, 求其中最小的情况. 如果最后ans为inf, 说明是一个完全图, 那么结果就为n. #include <iostream> #include <vector> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath…
uniform mat4 osg_ViewMatrixInverse;//osg内置uniform void main() { vec4 posWorld = osg_ViewMatrixInverse*gl_ModelViewMatrix*gl_Vertex; ..... }…
链接 题意为去掉多少个顶点使图不连通,求顶点连通度问题.拆点,构造图,对于<u,v>可以变成<u2,v1> <v2,u1>容量为无穷,<u1,u2>容量为1.那么求出来的最大流(即最小割)就为所需要删除的顶点个数,需要字典序输出,从小到大枚举顶点,如果不加入当前点,最小割变小了的话 ,说明这个点是肯定要删除的. #include <iostream> #include <cstdio> #include <cstring>…
题目链接:传送门 题目大意:给你一副无向图,求解图的顶点连通度 题目思路:模板(图论算法理论,实现及应用 P396) Menger定理:无向图G的顶点连通度k(G)和顶点间最大独立轨数目之间存在如下关系: 1.若G是完全图,k(G)=|V(G)|-1 2.若G不是完全图,k(G)=min{P(A,B)}  其中A,B不直接相连 #include <iostream> #include <cstdio> #include <cstdlib> #include <cm…