这篇文章主要介绍了一个名为Aluminum通信库,在这个库中主要针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 通信何时发生 一般来说,神经网络的训练过程分为三步:前向传播.反向传播以及参数优化.在使用数据并行进行分布式训练的情况下,通信主要发生在反向传播之后与参数优化之前,在此阶段各个计算节点需要进行梯度的同步.广义上来讲,梯度的同步过程符合Allreduce语义.从实现上来说,我们既可以通过中心化的参数服务器架构来实现梯…
本文发表在MLHPC 2018上,主要介绍了一个名为Aluminum通信库,这个库针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 通信何时发生 一般来说,神经网络的训练过程分为三步:前向传播.反向传播以及参数优化.在使用数据并行进行分布式训练的情况下,通信主要发生在反向传播之后与参数优化之前,在此阶段各个计算节点需要进行梯度的同步.广义上来讲,梯度的同步过程符合Allreduce语义.从实现上来说,我们既可以通过中心化的参数…
本文主要研究HPC上进行数据并行训练的可行性.作者首先在HPC上实现了两种通信量化算法(1 Bit SGD以及阈值量化),然后提出了自适应量化算法以解决它们的缺点.此外,发挥出量化算法的性能,作者还自己实现了一个Allreduce算法. 1 Bit SGD可以实现良好的重构和较低的误差,但与阈值量化相比,它的计算开销更大,并且压缩率不能达到32倍以上.阈值量化速度很快,但是不同的模型需要设置不同的阈值,而且选择好的阈值也很困难,并且使用阈值\(\tau\)作为重建值是次优的.如果阈值设置的比较小…
1,概述 模型量化属于模型压缩的范畴,模型压缩的目的旨在降低模型的内存大小,加速模型的推断速度(除了压缩之外,一些模型推断框架也可以通过内存,io,计算等优化来加速推断). 常见的模型压缩算法有:量化,剪枝,蒸馏,低秩近似以及紧凑模型设计(如mobileNet)等操作.但在这里有些方法只能起到缩减模型大小,而起不到加速的作用,如稀疏化剪枝.而在现代的硬件设备上,其实更关注的是模型推断速度.今天我们就讲一种既能压缩模型大小,又能加速模型推断速度:量化. 量化一般可以分为两种模式:训练后的量化(po…
为了了解,上来先看几篇中文博客进行简单了解: 如何理解Nvidia英伟达的Multi-GPU多卡通信框架NCCL?(较为优秀的文章) 使用NCCL进行NVIDIA GPU卡之间的通信(GPU卡通信模式测试) nvidia-nccl 学习笔记 (主要是一些接口介绍) https://developer.nvidia.com/nccl (官方网站) https://github.com/NVIDIA/nccl (官方仓库) https://www.cnblogs.com/xuyaowen/p/het…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by the author(s). Abstract 现代移动设备可以访问大量适合模型学…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. Table of Contents Tutorials Model Zoo Recurrent Networks Convolutional Networks ETC Libraries Model related GPU related IDE related ETC Links Tutorials…
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical Language Models Based on Neural Networks Mikolov的博士论文,主要将他在RNN用在语言模型上的工作进行串联 3 Extensions of Recurrent Neural Network Language Model 开山之…
转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类.目前只整理了部分,剩余部分还会持续更新. 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical…