目标检测——IoU 计算】的更多相关文章

Iou 的计算 我们先考虑一维的情况:令 \(A = [x_1,x_2], B = [y_1, y_2]\),若想要 \(A\) 与 \(B\) 有交集,需要满足如下情况: 简言之,要保证 \(A\) 和 \(B\) 的最大值中最小的那个减去它们中的最小值中最大的那个即可获得公共部分,代码实现如下: class Anchor: def __init__(self, base_size=16): self.base_size = base_size # 滑动窗口的大小 if not base_si…
交并比(Intersection-over-Union,IoU): 目标检测中使用的一个概念 是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率 即它们的交集与并集的比值.最理想情况是完全重叠,即比值为1. 基础知识: 交集: 集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作A∩B. eg: A={1,2,3} B={2,3,4} A n B = {2,3} 并集: 给定两个集合A…
CVPR2019目标检测论文看点:并域上的广义交 Generalized Intersection over Union Generalized Intersection over Union: A Metric and A Loss for BoundingBox Regression 并域上的广义交Intersection over Union(IOU)是目标检测标准最流行的评估手段.可是,使用boundingbox回归参数方法计算距离误差和最大化度量值优化之间有一个缺陷gap.度量优化目标…
看完这篇就懂了. IoU intersect over union,中文:交并比.指目标预测框和真实框的交集和并集的比例. mAP mean average precision.是指每个类别的平均查准率的算术平均值.即先求出每个类别的平均查准率(AP),然后求这些类别的AP的算术平均值.其具体的计算方法有很多种,这里只介绍PASCAL VOC竞赛(voc2010之前)中采用的mAP计算方法,该方法也是yolov3模型采用的评估方法,yolov3项目中如此解释mAP,暂时看不明白可以先跳过,最后再…
首先我们为什么要使用这些呢? 举个简单的例子,假设我们图像里面只有1个目标,但是定位出来10个框,1个正确的,9个错误的,那么你要按(识别出来的正确的目标/总的正确目标)来算,正确率100%,但是其实效果不是很好,而且还有框的各种情况,因此我们需要下面的指标来衡量一个目标检测模型的好坏. 1.IOU(Intersection Over Union) 这是关于一个具体预测的Bounding box的准确性评估的数据,意义也就是为了根据这个IOU测定你这个框是不是对的,大于等于IOU就是对的,小于就…
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(False Positive)是负样本预测为正样本的数量,误报:即与Ground truth区域IoU < threshold的预测框 FN(True Negative)是本为正,错误的认为是负样本的数量,漏报:遗漏的Ground truth区域 TN(False Negative)是本为负,正确的认为是负样本…
论文提出了IoU-based的DIoU loss和CIoU loss,以及建议使用DIoU-NMS替换经典的NMS方法,充分地利用IoU的特性进行优化.并且方法能够简单地迁移到现有的算法中带来性能的提升,实验在YOLOv3上提升了5.91mAP,值得学习 论文:Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression 论文地址:https://arxiv.org/abs/1911.08287 代码地址:ht…
常见的目标检测算法缺少了定位效果的学习,IoU-Net提出IoU predictor.IoU-guided NMS和Optimization-based bounding box refinement,将IoU作为一个新分支融入到模型的学习和推理中,带来了新的性能优化方法,值得学习和参考 论文: Acquisition of Localization Confidence for Accurate Object Detection 论文地址 https://arxiv.org/abs/1807.…
上期讲解了目标检测中的三种数据增强的方法,这期我们讲讲目标检测中用来评估对象检测算法的IOU和CIOU的原理应用以及代码实现. 交并比IOU(Intersection over union) 在目标检测任务中,我们用框框来定位对象,如下图定位图片中这个汽车,假设实际框是图中红色的框框,你的算法预测给出的是紫色的框框,怎么判断你的算法预测的这个框框的效果好坏呢? 这就用到我们的交并比函数IOU了,计算公式如下: 将我们图片汽车的实际红色框记为A,算法的预测框记为B,交并比就是数学中A和B的交集A∩…
1. 基本要求 从直观理解,一个目标检测网络性能好,主要有以下表现: 把画面中的目标都检测到--漏检少 背景不被检测为目标--误检少 目标类别符合实际--分类准 目标框与物体的边缘贴合度高-- 定位准 满足运行效率的要求--算得快 下图是从 Tensorflow Object Detection API 的 Model Zoo 中截取的部分模型列表. 算得快这一点通过 Speed 来体现.而其他因素,使用了mAP (mean average Precision) 这一个指标来综合体现. mean…