SparkMLlib-协同过滤推荐算法,电影推荐系统,物品喜好推荐 一.协同过滤 1.1 显示vs隐式反馈 1.2 实例介绍 1.2.1 数据说明 评分数据说明(ratings.data) 用户信息(users.dat) 电影信息(movies.dat) 程序代码 二.协同过滤推荐算法--推荐系统代码 2.1 训练数据 2.2 实战代码 2.3 运行结果(亲测可行) 三.Spark MLlib推荐算法 四.基于物品的Spark MLlib代码 推荐模型效果的评估 相关内容原文地址: 博客园:Le…
九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. 1.找出各个电影的评分人总数 2.对于每个电影对A和B,找出所有同时对A和B评分的人. 3.找出每两个相关电影之间的关联.在这个阶段,我使用3个不同的关联度算法(pearson,cosine,jaccard)一般要根据具体的数据需求来选择关联度算法. 数据的输入格式: 第一阶段转化完之后: 经过M…
利用电影观看记录数据,进行电影推荐. 目录 利用电影观看记录数据,进行电影推荐. 准备 1.任务描述: 2.数据下载 3.部分数据展示 实操 1.设置输入输出路径 2.配置spark 3.读取Rating文件 4.读取movie文件 5.保存结果 6.结果 你可能会遇到的问题 问题一:结果输出目录已存在 问题二:缺少hadoop环境变量 准备 1.任务描述: 在推荐领域有一个著名的开放测试集,下载链接是:http://grouplens.org/datasets/movielens/,该测试集包…
Surprise(Simple Python Recommendation System Engine)是一款推荐系统库,是scikit系列中的一个.简单易用,同时支持多种推荐算法(基础算法.协同过滤.矩阵分解等). 设计surprise时考虑到以下目的: 让用户完美控制他们的实验.为此,特别强调 文档,试图通过指出算法的每个细节尽可能清晰和准确. 减轻数据集处理的痛苦.用户可以使用内置数据集(Movielens, Jester)和他们自己的自定义 数据集. 提供各种即用型预测算法, 例如基线算…
推荐模型 推荐模型的种类分为: 1.基于内容的过滤:基于内容的过滤利用物品的内容或是属性信息以及某些相似度定义,来求出与该物品类似的物品. 2.协同过滤:协同过滤是一种借助众包智慧的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义. 在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似. 同样也可以借助基于物品的方法来做推荐.这种方法通常根据现有用户对物品的偏好或是评级情况,来计算物品之间的某种相似…
"协同过滤"是推荐系统中的常用技术,按照分析维度的不同可实现"基于用户"和"基于产品"的推荐. 以下是利用python实现电影推荐的具体方法,其中数据集源于<集体编程智慧>一书,后续的编程实现则完全是自己实现的(原书中的实现比较支离.难懂). 这里我采用的是"基于产品"的推荐方法,因为一般情况下,产品的种类往往较少,而用户的数量往往非常多,"基于产品"的推荐程序可以很好的减小计算量. 其实基本的…
“协同过滤”是推荐系统中的常用技术,按照分析维度的不同可实现“基于用户”和“基于产品”的推荐. 以下是利用python实现电影推荐的具体方法,其中数据集源于<集体编程智慧>一书,后续的编程实现则完全是自己实现的(原书中的实现比较支离.难懂). 这里我采用的是“基于产品”的推荐方法,因为一般情况下,产品的种类往往较少,而用户的数量往往非常多,“基于产品”的推荐程序可以很好的减小计算量. 其实基本的思想很简单: 首先读入数据,形成用户-电影矩阵,如图所示:矩阵中的数据为用户(横坐标)对特定电影(纵…
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Feb  7 14:38:33 2017 电影推荐分析: 使用 亲和性分析方法 基于 Apriori算法 推荐电影 @author: yingzhang """ #读取数据集: http://grouplens.org/datasets/movielens/ import os #使用pandas加载数据 impor…
基于Azure构建PredictionIO和Spark的推荐引擎服务 1. 在Azure构建Ubuntu 16.04虚拟机 假设前提条件您已有 Azure 帐号,登陆 Azure https://portal.azure.com . 点击左上部的 +New 按钮,在搜索框中输入 Ubuntu ,或者点击 Virtual Machine 选择 Ubuntu Server 14.04 LTS,然后点击 Create 创建虚拟机. 创建完成虚拟机后,在虚拟机的设置中找到 Azure 为其分配的 IP…
Azure构建PredictionIO和Spark的推荐引擎服务 1. 在Azure构建Ubuntu 16.04虚拟机 假设前提条件您已有 Azure 帐号,登陆 Azure https://portal.azure.com .点击左上部的 +New 按钮,在搜索框中输入 Ubuntu ,或者点击 Virtual Machine 选择 Ubuntu Server 14.04 LTS,然后点击 Create 创建虚拟机. 创建完成虚拟机后,在虚拟机的设置中找到 Azure 为其分配的 IP 地址,…