完整代码见kaggle kernel 或 NbViewer 比赛页面:https://www.kaggle.com/c/titanic Titanic大概是kaggle上最受欢迎的项目了,有7000多支队伍参加,多年来诞生了无数关于该比赛的经验分享.正是由于前人们的无私奉献,我才能无痛完成本篇. 事实上kaggle上的很多kernel都聚焦于某个特定的层面(比如提取某个不为人知的特征.使用超复杂的算法.专做EDA画图之类的),当然因为这些作者本身大都是大神级别的,所以平日里喜欢钻研一些奇淫巧技.…
1.题目 这道题目的地址在https://www.kaggle.com/c/titanic,题目要求大致是给出一部分泰坦尼克号乘船人员的信息与最后生还情况,利用这些数据,使用机器学习的算法,来分析预测另一部分人员最后是否生还.题目练习的要点是语言和数据分析的基础内容(比如python.numpy.pandas等)以及二分类算法. 数据集包含3个文件:train.csv(训练数据).test.csv(测试数据).gender_submission.csv(最后提交结果的示例,告诉大家提交的文件长什…
初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要学习如果在Kaggle竞赛上进行一次提交.Kaggle是一个创造算法,与来自全世界的机器学习练习者竞赛的平台.你的算法在给定的数据集中准确率越高你就赢了.Kaggle是一个有趣的途径去联系机器学习技能. Kaggle网站上有不同的竞赛.有一个是预测哪个成哥在泰坦尼克号上存活下来.在接下去的任务中,我…
<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代码基于python2.x.不过大部分可以通过修改print()来适应python3.5.x. 提供的代码默认使用 Jupyter Notebook,建议安装Anaconda3. 最好是到https://www.kaggle.com注册账号后,运行下第四章的代码,感受下. 监督学习: 2.1.1分类学习(Cla…
前言 这个是Kaggle比赛中泰坦尼克号生存率的分析.强烈建议在做这个比赛的时候,再看一遍电源<泰坦尼克号>,可能会给你一些启发,比如妇女儿童先上船等.所以是否获救其实并非随机,而是基于一些背景有先后顺序的. 1,背景介绍 1912年4月15日,载着1316号乘客和891名船员的豪华巨轮泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难.沉船导致大量伤亡的原因之一是没有足够的救生艇给乘客和船员.虽然幸存下来有一些运气因素,但有一些人比其他人更有可能生存,比如妇女…
如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始了Kaggle比赛,最近还赢得了几个比赛. 要在Kaggle比赛中取得好成绩不仅仅是要求知道一些机器学习算法,而且要有一个准确的思维模式,好学,花大量的时间探索数据.虽然,在很多方面通常都不强调在开始Kaggle比赛的时候使用教程(tutorials),但是在这里,我将告诉大家如何开始Kaggle…
<机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于python入门的机器学习入门的书籍,全书通俗易懂且有代码提供.书中源代码连接为Ipython环境.主页君使用的是pycharm,python2.7,具体安转过程书本写的很详细.码完书中代码,有一点点点小不符(或许可能是因为平台不一样),百度基本可以解决问题(有问题也可以留言探讨).贴一点代码,以示学习: 1…
pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: 在处理数据过程中发现会超出,虽然我们都知道对于大数据的处理有诸如spark等分布式处理框架,但是依然存在下面的问题: 对于个人来说,没有足够的资源让这些框架发挥其优势: 从处理数据的库丰富程度上,还是pandas等更具有优势: 很多时候并不是pandas无法处理,只是数据未经优化: 所以这里还是考…
kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www.kaggle.com/c/nfl-big-data-bowl-2020 项目链接,该项目代码已经public,大家可以copy下来直接运行 https://www.kaggle.com/holoong9291/nfl-big-data-bowl github仓库链接,更多做的过程中的一些思考.问题…
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的废话,毕竟英文有的时候比较啰嗦. 一.决策树算法基本原理 背景:假设你的哥哥是一个投资房地产的大佬,投资地产赚了很多钱,你的哥哥准备和你合作,因为你拥有机器学习的知识可以帮助他预测房价.你去问你的哥哥他是如何预测房价的,他告诉你说他完全是依靠直觉,但是你经过调查研究发现他预测房价是根据房价以往的表现…