HistoryServer服务可以让用户通过Spark UI界面,查看历史应用(已经执行完的应用)的执行细节,比如job信息.stage信息.task信息等,该功能是基于spark eventlogs日志文件的,所以必须打开eventlogs日志开关,关于日志开关的打开和HistoryServer服务的启动方法这里不再讲述,下面进入正题 下面使用的spark版本是2.0.2 类结构图 Web相关  数据流相关  相关类及特质 WebUI Web Server服务中UI层次结构的最顶层.每一个We…
欢迎转载,转载请注明出处,徽沪一郎. 概述 Scala越来越流行, Spark也愈来愈红火, 对spark的代码进行走读也成了一个很普遍的行为.不巧的是,当前java社区中很流行的ide如eclipse,netbeans对scala的支持都不算太好.在这种情况下不得不想到编辑器之神emacs,利用emacs+ensime来打造scala编程环境. 本文讲述的步骤全部是在arch linux上,其它发行版的linux视具体情况变通. 安装scala pacman -S scala 安装sbt pa…
一.概述 根据<深入理解Spark:核心思想与源码分析>一书,结合最新的spark源代码master分支进行源码阅读,对新版本的代码加上自己的一些理解,如有错误,希望指出. 1.块管理器BlockManager的实现 块管理器是Spark存储体系的核心组件,Driver Application和Executor都会创建BlockManager,源代码位置在core/org.apache.spark.storage,部分代码如下. private[spark] val externalShuff…
1.参考. 利用IDEA工具编译Spark源码(1.60~2.20) https://blog.csdn.net/He11o_Liu/article/details/78739699 Maven编译打包spark(2.1.0)源码及出现问题的解决方案(win7+Intellij IDEA) https://blog.csdn.net/u011464774/article/details/76704785 通过maven将spark源码导入ideahttps://blog.csdn.net/pcn…
根据spark2.2的编译顺序来确定源码阅读顺序,只阅读核心的基本部分. 1.common目录 ①Tags②Sketch③Networking④Shuffle Streaming Service⑤Unsafe 2.launcher目录 3.core目录 spark的编译顺序是: [INFO] Reactor Build Order:[INFO][INFO] Spark Project Parent POM[INFO] Spark Project Tags[INFO] Spark Project…
1 作用 当该方法在spark内部代码中调用时,会返回当前调用spark代码的用户类的名称,以及其所调用的spark方法.所谓用户类,就是我们这些用户使用spark api的类. 2 内部实现 2.1 涉及到的java或scala知识 (1)Thread.currentThread.getStackTrace():返回一个表示该线程堆栈转储的堆栈跟踪元素数组.如果该线程尚未启动或已经终止,则该方法将返回一个零长度数组.如果返回的数组不是零长度的,则其第一个元素代表堆栈顶,它是该序列中最新的方法调…
##SparkContext启动过程 基于spark 2.1.0  scala 2.11.8 spark源码的体系结构实在是很庞大,从使用spark-submit脚本提交任务,到向yarn申请容器,启动driver进程,启动executor进程,到任务调度,shuffle过程等等,模块众多,而且每个模块都很大,所以要全部看完啃透几乎不可能,一是经历不允许,而是有些边缘性的模块主要起到辅助的功能,没有什么高深的技术含量,花时间性价比不高.因此我决定略去前面提交任务,向yarn提交任务,申请资源,启…
在上节的解读中发现spark的源码中大量使用netty的buffer部分的api,该节将看到netty核心的一些api,比如channel: 在Netty里,Channel是通讯的载体(网络套接字或组件的连接),而ChannelHandler负责Channel中的逻辑处理,channel支持读,写,绑定本地端口,连接远程等,Channel中所有的操作都是异步的,当发生io操作的时候将会返回一个ChannelFutrue的接口,在ChannelFutrue里面可以处理操作成功.失败.取消后的动作.…
Spark中job由action动作生成,那么stage是如何划分的呢?一般的解答是根据宽窄依赖划分.那么我们深入源码看看吧 一个action 例如count,会在多次runJob中传递,最终会到一个函数 dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)dagScheduler是DAGScheduler的一个实例,因此,后面的工作都交给DAGSchedul…
spark将在1.6中替换掉akka,而采用netty实现整个集群的rpc的框架,netty的内存管理和NIO支持将有效的提高spark集群的网络传输能力,为了看懂这块代码,在网上找了两本书看<netty in action>和<netty权威指南>,结合了spark的源码既学习了netty也看完了spark netty的部分源码.该部分源码掺杂了太多netty的东西,看起来还是有点累的. 下面是我画的UML类图.https://onedrive.live.com/redir?re…
当我们在使用spark编写mr作业是,最后都要涉及到调用reduce,foreach或者是count这类action来触发作业的提交,所以,当我们查看这些方法的源码时,发现底层都调用了SparkContext的runJob方法,而SparkContext的runJob方法又调用的DAGScheduler的runJob方法: def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partiti…
ShuffleManager(一) 本篇,我们来看一下spark内核中另一个重要的模块,Shuffle管理器ShuffleManager.shuffle可以说是分布式计算中最重要的一个概念了,数据的join,聚合去重等操作都需要这个步骤.另一方面,spark之所以比mapReduce的性能高其中一个主要的原因就是对shuffle过程的优化,一方面spark的shuffle过程更好地利用内存(也就是我们前面在分析内存管理时所说的执行内存),另一方面对于shuffle过程中溢写的磁盘文件归并排序和引…
RDDs弹性分布式数据集 spark就是实现了RDDs编程模型的集群计算平台.有很多RDDs的介绍,这里就不仔细说了,这儿主要看源码. abstract class RDD[T: ClassTag]( @transient private var _sc: SparkContext, @transient private var deps: Seq[Dependency[_]] ) extends Serializable with Logging { SparkEnv几个重要组件 BlockM…
shuffle读过程源码分析 上一篇中,我们分析了shuffle在map阶段的写过程.简单回顾一下,主要是将ShuffleMapTask计算的结果数据在内存中按照分区和key进行排序,过程中由于内存限制会溢写出多个磁盘文件,最后会对所有的文件和内存中剩余的数据进行归并排序并溢写到一个文件中,同时会记录每个分区(reduce端分区)的数据在文件中的偏移,并且把分区和偏移的映射关系写到一个索引文件中. 好了,简单回顾了写过程后,我们不禁思考,reduce阶段的数据读取的具体过程是什么样的?数据读取的…
TransportContext用来创建TransportServer和TransportclientFactory,同时使用TransportChannelHandler用来配置channel的pipelines,TransportClient提供了两种传输协议,一个是数据层(fetch chunk),一个是控制层(rpc).rpc的处理需要用户提供一个RpcHandler来处理,它负责建立一个用于传输的流, 使用zero-copy以块的形式进行数据传输.TransportServer和Tra…
package com.wanji.scala.test import javax.swing.text.AbstractDocument.Content import scala.actors.Actor case class Hello(name:String,content:String,send:Actor) case class HelloBack(name:String,content: String,sender:Actor) /** * 描述:Scala编程实战 * 作者: su…
http://blog.csdn.net/oopsoom/article/details/38257749…
本文旨在帮助那些想要对Spark有更深入了解的工程师们,了解Spark源码的概况,搭建Spark源码阅读环境,编译.调试Spark源码,为将来更深入地学习打下基础. 一.项目结构 在大型项目中,往往涉及非常多的功能模块,此时借助于Maven进行项目.子项目(模块)的管理,能够节省很多开发和沟通成本.整个Spark项目就是一个大的Maven项目,包含着多个子项目.无论是Spark父项目还是子项目,本身都可以作为独立的Maven项目来管理.core是Spark最为核心的功能模块,提供了RPC框架.度…
  C家最近也有一篇关于如何阅读大型c项目源代码的文章,学习..融合.. -------------------- ref:http://www.csdn.net/article/2014-06-05/2820092-interview-with-pengxu   摘要:阅读源码是开源项目最好的学习方式,然而真正的执行起来却并不容易.这里我们为大家分享许鹏的源码阅读经验.C程序员的修养以及Spark和Storm源码走读博文. 对许鹏的第一印象来源于其Bolg的粗读,最早时候更准确说应该是博文的粗…
即日起开始spark源码阅读之旅,这个过程是相当痛苦的,也许有大量的看不懂,但是每天一个方法,一点点看,相信总归会有极大地提高的.那么下面开始: 创建sparkConf对象,那么究竟它干了什么了类,从代码层面,我们可以看到我们需要setMaster啊,setAppName啊,set blabla啊...等等~ val sparkConf = new SparkConf().setMaster("local").setAppName("TopActiveLocations&qu…
说在前面的话   重新试多几次.编译过程中会出现下载某个包的时间太久,这是由于连接网站的过程中会出现假死,按ctrl+c,重新运行编译命令. 如果出现缺少了某个文件的情况,则要先清理maven(使用命令 mvn clean) 再重新编译.  Spark源码编译的3大方式 1.Maven编译 2.SBT编译  (暂时没) 3.打包编译make-distribution.sh 前言 Spark可以通过SBT和Maven两种方式进行编译,再通过make-distribution.sh脚本生成部署包.…
不多说,直接上干货! 说在前面的话   重新试多几次.编译过程中会出现下载某个包的时间太久,这是由于连接网站的过程中会出现假死,按ctrl+c,重新运行编译命令.  如果出现缺少了某个文件的情况,则要先清理maven(使用命令 mvn clean) 再重新编译.  Spark源码编译的3大方式 1.Maven编译 2.SBT编译  (暂时没) 3.打包编译make-distribution.sh 注意的是,spark1.6.X 需要搭配1.7.x的jdk和maven3.3.3版本    spar…
在学习一门新语言时,想必我们都是"Hello World"程序开始,类似地,分布式计算框架的一个典型实例就是WordCount程序,接触过Hadoop的人肯定都知道用MapReduce实现WordCount,当前内存分布式计算框架Spark因为其计算速度之快,并且可以部署到Hadoop YARN中运行,已经受到各大公司的青睐,Spark社区提供了一些编译好的jar包,但是其中没有适配Hadoop-2.2.0的jar包,为了避免版本问题,需要自己编译指定hadoop版本的Spark ja…
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著   ISBN 978-7-121-25420-8 2015年3月出版 定价:68.00元 304页 16开 编辑推荐 Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐 1.本书全面.系统地介绍了Spark源码,深入浅出,…
许久没有写博客了,没有太多时间,最近陆续将Spark源码的一些阅读笔记传上,接下来要修改Spark源码了. 这个类继承于TaskScheduler类,重载了TaskScheduler中的大部分方法,是Task调度的实际操作. 1.检测推测执行间隔,最大响应时间,每个task的CPU数. 2.指定调度模式SchedulingMode. 3.setDAGScheduler:设置任务调度的对象DAGScheduler. 4.initialize:初始化backend接口和资源池pool,并给资源池配置…
(1)下载Spark源码 到官方网站下载:Openfire.Spark.Smack,其中Spark只能使用SVN下载,源码的文件夹分别对应Openfire.Spark和Smack. 直接下载Openfire.Smack源代码  下载地址:http://www.igniterealtime.org/downloads/source.jsp 利用SVN方式下载Spark源代码  1.为Eclipse安装Subversive插件     A 启动Eclipse     B 依次点击Help->Inst…
1. 准备工作 首先你的系统中需要安装了 JDK 1.6+,并且安装了 Scala.之后下载最新版的 IntelliJ IDEA 后,首先安装(第一次打开会推荐你安装)Scala 插件,相关方法就不多说了.至此,你的系统中应该可以在命令行中运行 Scala.我的系统环境如下: 1. Mac OS X(10.10.4) 2.JDK 1.7.79 3.Scala 2.10.4 4. IntelliJ IDEA 14 另外,最后还是建议大家开始先使用 pre-built 的 Spark,对 Spark…
首先声明下 这是我在eoe上转载的 写的很好就摘抄了... 第一步 下载源码 svn下载,下载地址:spark:http://svn.igniterealtime.org/svn/repos/spark/trunkopenfire:http://svn.igniterealtime.org/svn/repos/openfire/trunksmack:http://svn.igniterealtime.org/svn/repos/smack/trunk 新建文件夹,命名spark--->右键SVN…
欢迎转载,转载请注明出处,徽沪一郎. 概要 上篇博文讲述了如何通过修改源码来查看调用堆栈,尽管也很实用,但每修改一次都需要编译,花费的时间不少,效率不高,而且属于侵入性的修改,不优雅.本篇讲述如何使用intellij idea来跟踪调试spark源码. 前提 本文假设开发环境是在Linux平台,并且已经安装下列软件,我个人使用的是arch linux. jdk scala sbt intellij-idea-community-edition 安装scala插件 为idea安装scala插件,具…