承接上一篇博客.该论文思路清晰,实验充分,这里大致写一些比较不错的idea.从标题就能看出本文的主要贡献:轻量.鲁棒.利用一个轻量CNN从大规模数据且含大量噪声中来学习一个深度面部表征. 直接谈谈贡献: 本文介绍MFM操作,一种特殊的maxout来学习少参数网络.相比于ReLU从数据中学来阈值,MFM采用一种竞争关系来得到更好的泛化能力,适应于不同的数据分布. 轻量CNN和MFM一起用来学习一种统一的面部表征.我们按照AlexNet.VGG.ResNet设计了三种轻量网络.所提出的模型在时空复杂…
Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association2018-09-29 19:36:43 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers/Dapeng_Chen_Improving_Deep_Visual_ECCV_2018_paper.pdf 1. I…
Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CVPR-2019, arXiv Code: https://github.com/leoxiaobin/deep-high-resolution-net.pytorch Related Works: 1. High-Resolution Representations for Labeling Pix…
From: http://www.infoq.com/cn/news/2016/12/depth-neural-network-fake-photos 当时大部分的DNN在识别图像中对象的过程中主要依据的特征是一些局部特征(如豹子身上的斑点.校车的黑黄色),而忽略了整体特征(如海星的五角星形状.豹子长了四条腿). 知道了DNN所忽略的特征,从而有针对性的进行算法的改进,就有可能大幅提升DNN生成指定图像的能力. 2016年,该研究组先后发布了两篇论文介绍 Deep Generator Netwo…
查找异质图像匹配的过程中,发现几篇某组的论文,都是关于NIR-VIS的识别问题,提到了许多处理异质图像的处理方法,网络结构和idea都很不错,记录其中一篇. 其余两篇: Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition A Light CNN for Deep Face Representation with Noisy Labels 摘要 VIS-NIR(可见光与近红外)面部识别仍然是异质图像识别…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
本文来自<ArcFace: Additive Angular Margin Loss for Deep Face Recognition>,时间线为2018年1月.是洞见的作品,一作目前在英国帝国理工大学读博. CNN近些年在人脸识别上效果显著,为了增强softmax loss的辨识性特征学习能力,Sphereface提出的multiplicative angular margin,参考文献[43,44]提出的additive cosine margin等分别通过将角度边际和余弦边际整合到lo…
本文来自<MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices>,时间线为2018年4月.是北京交通大学和握奇数据公司的作品. 人脸发展至今,效果相比传统方法有了很大的提升,然而受限于机器资源和实时性部署等需求,需要考虑诸如MobileNet等网络的使用. 0 引言 在越来越多的手机和嵌入式设备上,人脸验证变成越来越流行的一个认证技术.然而,现在高准确度的人脸验证模型都…
本文来自<MobiFace: A Lightweight Deep Learning Face Recognition on Mobile Devices>,时间线为2018年11月.是作者分别来自CMU和uark学校. 0 引言 随着DCNN的普及,在目标检测,目标分割等领域都有不小的进步,然而其较高准确度背后却是大量的参数和计算量.如AlexNet需要61百万参数量,VGG16需要138百万参数量,Resnet-50需要25百万参数量.Densenet190(k=40)需要40百万参数量.…
转载 https://handong1587.github.io/deep_learning/2015/10/09/recognition.html#facenet Classification / Recognition Published: 09 Oct 2015 Category: deep_learning Jump to... Papers Multi-object Recognition Multi-Label Classification Face Recognition Deep…