CNN中feature map.卷积核.卷积核的个数.filter.channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/details/82529397 作者写的很好,解决了很多基础问题. feather map理解 这个是输入经过卷积操作后输出的结果,一般都是二维的多张图片,在论文图上都是以是多张二维图片排列在一起的(像个豆腐皮一样),它们其中的每一个都被称为\(feature \quad map\) feather map…
map.reduce.filter.sorted函数,这些函数都支持函数作为参数. map函数 map() 函数语法:map(function, iterable, ...) function -- 函数 iterable -- 一个或多个序列 map()接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 例如,对于list [1, 2, 3, 4, 5, 6, 7, 8, 9] 如果希望把list的每个元素都作平方,就可以…
具体可以看这篇文章,写的很详细.https://blog.csdn.net/xys430381_1/article/details/82529397…
Python中map().reduce()和filter()三个函数均是应用于序列的内置函数,分别对序列进行遍历.递归计算以及过滤操作.这三个内置函数在实际使用过程中常常和“行内函数”lambda函数联合使用,我们首先介绍下lambda函数. 1.lambda函数 lambda函数的Python3.x API文档 lambdaAn anonymous inline function consisting of a single expression which is evaluated when…
在CNN(1)中,我们用到下图来说明卷积之后feature maps尺寸和深度的变化.这一节中,我们讨论feature map size, padding and stride. 首先,在Layer1中,输入是32x32的图片,而卷积之后为28x28,试问filter的size(no padding)? (答案是5x5). 如果没答上来,请看下图: I是一张7x7的图片,filter是3x3的,I*K生成的feature map是5x5的.所以我们推出feature map size公式为: 其…
Mask_RCNN-2.0 网页链接:https://github.com/matterport/Mask_RCNN/releases/tag/v2.0 Mask_RCNN-master(matterport / Mask_RCNN)网页链接:https://github.com/matterport/Mask_RCNN 操作步骤 本文假设运行环境满足基本需求:Python = 3.6.8, tensorflow-gpu = 1.12.0, keras = 2.0.8, matplotlib =…
Objective-C中,ARC下的 strong和weak指针原理解释 提示:本文中所说的"实例变量"即是"成员变量","局部变量"即是"本地变量" 一.简介 ARC是自iOS 5之后增加的新特性,完全消除了手动管理内存的烦琐,编译器会自动在适当的地方插入适当的retain.release.autorelease语句.你不再需要担心内存管理,因为编译器为你处理了一切. 注意:ARC 是编译器特性,而不是 iOS 运行时特性(…
个人学习CNN的一些笔记,比较基础,整合了其他博客的内容 feature map的理解在cnn的每个卷积层,数据都是以三维形式存在的.你可以把它看成许多个二维图片叠在一起(像豆腐皮竖直的贴成豆腐块一样),其中每一个称为一个feature map. feature map 是怎么生成的?输入层:在输入层,如果是灰度图片,那就只有一个feature map:如果是彩色图片(RGB),一般就是3个feature map(红绿蓝) [ 下图中三大部分依次是输入RGB图片,卷积核(也称过滤器),卷积结果(…
在使用fast rcnn以及faster rcnn做检测任务的时候,涉及到从图像的roi区域到feature map中roi的映射,然后再进行roi_pooling之类的操作.比如图像的大小是(600,800),在经过一系列的卷积以及pooling操作之后在某一个层中得到的feature map大小是(38,50),那么在原图中roi是(30,40,200,400),在feature map中对应的roi区域应该是roi_start_w = round(30 * spatial_scale);r…
实际上在卷积操作的时候,比如说,我某一层输出的feature map的size为4713*13 channel的数目为7,设经过某卷积层之后,网络输出的feature map的channel的数目为17 从7个channel到17个channel,假设卷积核的kernel为33,那么这个卷积层的参数就有17733,那么,对于一个具体的操作而言 比如说,输出feature map有17个通道,对于输出feature map的第一个通道,是由其他7个kernel对输入的7个channel的featu…