HUST 1541 解方程】的更多相关文章

参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6394836.html 1541 - Student’s question 时间限制:1秒 内存限制:128兆 题目描述 YY is a student. He is tired of calculating the quadratic equation. He wants you to help him to get the result of the quadratic equation. T…
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已知多项式方程: $$a_0+a_1x+a_2x^2+...+a_nx^n=0$$ 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 输入格式 输入共 n+2 行. 第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开. 接下来的 n+1 行每行包含一个整数,依次为$a_0,a_…
题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,vy),硬币向圆盘撞过去,碰到圆盘后会以相反方向相同速度回来(好像有点违背物理规律啊,但是题目是这样,没办法).问硬币某一部分在圆形区域内的总时间. 解法: 解方程,求 (x+vx*t,y+vy*t) 代入圆形区域方程是否有解,如果没解,说明硬币运动轨迹与圆形区域都不相交,答案为0 如果有解,再看代入圆盘有…
P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,…
3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Description 输入文件名为equation.in. 输入共n+2行. 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,……,an. 输出描述 Output Description 输出文件名为equation.out. 第一行输出方程在…
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 m 均为正整数).[输入]输入文件名为 equation.in.输入共 n+2 行.第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开.接下来的 n+1 行每行包含一个整数,依次为a ! , a ! , a ! , ... , a ! .[输出]输出文件名为 equation.out.第一…
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item/21fee021a5db348d9d63d17b 参考资料(向量的旋转):http://www.cnblogs.com/woodfish1988/archive/2007/09/10/888439.html 题目大意:就是已知n个点,n个角.点Mi可以与多边形Ai和Ai+1构成等腰三角形,顶角为ang[i…
心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱”. 两只老虎两只老虎,跑得快跑得快. 一只没有耳朵,一只没有尾巴. 真奇怪,真奇怪. Tmk也觉得很奇怪,因为在他面前突然出现了一群这样的老虎,有的没耳朵,有的没尾巴,不过也有正常的. 现在Tmk告诉你这群老虎的耳朵个数,尾巴条数,以及老虎的腿的数目,问你有多少只是正常的. 其中只有三种老虎: 第一…
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-nonlinsolve() 1.说明: 2.源代码: 3.输出: (四)求解微分方程-dsolve() 1.说明: 2.源代码: 3.输出: 目录 前言 sympy不仅在符号运算方面强大,在解方程方面也是很强大. 本章节学习对应官网的:Solvers 官方教程 https://docs.sympy.o…
[怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7],[x, y]) 求极限 limit(x*(sqrt(x**2 + 1) - x), x, oo) oo 无穷大(标识方式是两个小写字母o连接在一起) E e pi 圆周率 integrate函数用于积分问题 求导 diff(f(x),x) 及多阶求导 >>> diff(x**3,x) 3*…