大数据时代的结构化存储--HBase】的更多相关文章

迄今,相信大家肯定听说过 HBase,但是对于 HBase 的了解可能仅仅是它是 Hadoop 生态圈重要的一员,是一个大数据相关的数据库技术. 今天我带你们一起领略一下 HBase 体系架构,看看它是如何大规模处理海量数据. 一.什么是 HBase? 关于 HBase 的实现,是基本遵循 Bigtable 的论文.HBase 是一个面向列的分布式数据库,也是个非关系型数据库系统(NoSQL),它建立在 Hadoop 文件系统之上.面向列的数据库是将数据表存储为数据列的一部分而不是数据行的数据库…
原文地址:http://www.csdn.net/article/2014-06-03/2820044-cloud-emc-hadoop 摘要:EMC公司作为全球信息存储及管理产品方面的领先公司,不久前,EMC宣布收购DSSD加强和巩固了其在行业内的领导地位,日前我们有幸采访到EMC中国的张安站,他就大数据.商业存储.Spark等给大家分享了自己的看法. 谈到大数据,张安站认为大数据本质上是两个根本性的问题,一个是数据很大,如何存储?另外一个是数据很大,如何分析?第一个问题,对于存储厂商来说,就…
原文地址:http://www.csdn.net/article/2014-06-03/2820044-cloud-emc-hadoop 摘要:EMC公司作为全球信息存储及管理产品方面的率先公司,不久前.EMC宣布收购DSSD加强和巩固了其在行业内的领导地位,日前我们有幸採訪到EMC中国的张安站.他就大数据.商业存储.Spark等给大家分享了自己的看法. 谈到大数据.张安站觉得大数据本质上是两个根本性的问题.一个是数据非常大.怎样存储?另外一个是数据非常大.怎样分析?第一个问题,对于存储厂商来说…
业务的挑战 存储量量/并发计算增大 现如今大量的中小型公司并没有大规模的数据,如果一家公司的数据量超过100T,且能通过数据产生新的价值,基本可以说是大数据公司了 .起初,一个创业公司的基本思路就是首先架构一个或者几个ECS,后面加入MySQL,如果有图片需求还可加入磁盘,该架构的基本能力包括事务.存储.索引和计算力.随着公司的慢慢发展,数据量在不断地增大,其通过MySQL及磁盘基本无法满足需求,只有分布式化. 这个时候MySQL变成了HBase,检索变成了Solr/ES,再ECS提供的计算力变…
在过去的很长一段时间中,关系型数据库(Relational Database Management System)一直是最主流的数据库解决方案,他运用真实世界中事物与关系来解释数据库中抽象的数据架构.然而,在信息技术爆炸式发展的今天,大数据已经成为了继云计算,物联网后新的技术革命,关系型数据库在处理大数据量时已经开始吃力,开发者只能通过不断地优化数据库来解决数据量的问题,但优化毕竟不是一个长期方案,所以人们提出了一种新的数据库解决方案来迎接大数据时代的到来——NoSQL(非关系型数据库). 为什…
原文地址:http://www.cnblogs.com/mokafamily/p/4076954.html 爆炸式发展的NoSQL技术 在过去的很长一段时间中,关系型数据库(Relational Database Management System)一直是最主流的数据库解决方案,他运用真实世界中事物与关系来解释数据库中抽象的数据架构.然而,在信息技术爆炸式发展的今天,大数据已经成为了继云计算,物联网后新的技术革命,关系型数据库在处理大数据量时已经开始吃力,开发者只能通过不断地优化数据库来解决数据…
新的想法诞生新的技术,从而造出许多新词,云计算.大数据.BYOD.社交媒体……在互联网时代,各种新词层出不穷,让人应接不暇.这些新的技术,这些新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能. 新的想法诞生新的技术,从而造出许多新词,云计算.大数据.BYOD.社交媒体.3D打印机.物联网……在互联网时代,各种新词层出不穷,让人应接不暇.这些新的技术,这些新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能.另一方面,云计算和大数据乃至其他助推各个行业发展的…
我最近研究了hive的相关技术,有点心得,这里和大家分享下. 首先我们要知道hive到底是做什么的.下面这几段文字很好的描述了hive的特性: 1.hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行.其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析. 2.Hive是建立在 Hadoop…
跟上节奏 大数据时代十大必备IT技能 新的想法诞生新的技术,从而造出许多新词,云计算.大数据.BYOD.社交媒体……在互联网时代,各种新词层出不穷,让人应接不暇.这些新的技术,这些新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能. 新的想法诞生新的技术,从而造出许多新词,云计算.大数据.BYOD.社交媒体.3D打印机.物联网……在互联网时代,各种新词层出不穷,让人应接不暇.这些新的技术,这些新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能.另一方面,云…
背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端的吐槽,这也怪不得Hadoop,毕竟它的设计就是为了批处理,使用用MR的编程模型来实现SQL查询,性能肯定不如意.所以通常我也只是把Hive当…
本文来自:http://blog.csdn.net/yu616568/article/details/52431835 如有侵权 可立即删除 背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端…
大数据时代,我们为什么使用hadoop 我们先来看看大数据时代, 什么叫大数据,“大”,说的并不仅是数据的“多”!不能用数据到了多少TB ,多少PB 来说. 对于大数据,可以用四个词来表示:大量,多样,实时,不确定. 也就是数据的量庞大,数据的种类繁杂多样话,数据的变化飞快,数据的真假存疑. 大量:这个大家都知道,想百度,淘宝,腾讯,Facebook,Twitter等网站上的一些信息,这肯定算是大数据了,都要存储下来. 多样:数据的多样性,是说数据可能是结构型的数据,也可能是非结构行的文本,图片…
摘要: 今天我们介绍可在廉价PC Server上搭建起大规模结构化存储集群的分布式存储系统——HBase. 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 内容包括hadoop入门.hadoop生态架构以及大型hadoop商业实战案例. 讲的很细致, MapReduce 就讲了 15 个小时. 学完后可以胜任 hadoop 的开发工作,很多人学的这个课程找到的工作. (包括指导书.练习代码.和用到的软件都打包了) 先到先得先学习.联系老师微信ganshiy…
近年来云计算.大数据.BYOD.社交媒体.3D打印机.物联网……在互联网时代,各种新词层出不穷,令人应接不暇.这些新的技术.新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能. 另一方面,云计算和大数据乃至其他助推各个行业发展的IT基础设施的新一轮部署与运维,都将带来更多的IT职位和相关技能技术的要求. 这些新趋势的到来,会诞生一批新的工作岗位,比如数据挖掘专家.移动应用开发和测试.算法工程师,商业智能分析师等,同时,也会强化原有岗位的新生命力,比如网络工程师.系统架构师.数…
博客已转移,请借一步说话.http://www.daniubiji.cn/archives/538 我们先来看看大数据时代, 什么叫大数据,“大”,说的并不仅是数据的“多”!不能用数据到了多少TB ,多少PB 来说. 对于大数据,可以用四个词来表示:大量,多样,实时,不确定. 也就是数据的量庞大,数据的种类繁杂多样话,数据的变化飞快,数据的真假存疑. 大量:这个大家都知道,想百度,淘宝,腾讯,Facebook,Twitter等网站上的一些信息,这肯定算是大数据了,都要存储下来. 多样:数据的多样…
分布式结构化存储系统-HBase应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 为了让读者更进一步了解HBase在实际生成环境中的应用方法,在董西成的书里介绍两个经典的HBase实际应用案例,分别是社交关系数据存储和时间序列数据库OpenTSDB.我这里手抄记录一下. 一.社交关系数据存储 互联网领域很大一类应用是社交关系数据,国内的新浪微博和微信,国外的Twitter和Facebook等,均是典型的代表.社交关系数据主要维护了Follower-folowed用户关系…
分布式结构化存储系统-HBase基本架构 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在大数据领域中,除了直接以文件形式保存数据外,还有大量结构化和半结构化的数据,这类数据通常需要支持更新操作,比如随机插入和删除,这使得分布式文件系统HDFS很难满足要求. 为了方便用户存取海量的结构化和半结构化数据,HBase应运而生.它是一个分布式列式存储系统,具有良好的扩展性,容错性以及易用的API.HBase是构建在分布式文件系统之上的,支持随机插入和删除的列族式存储系统,它可被简单…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/84 本文地址:http://www.showmeai.tech/article-detail/172 声明:版权所有,转载请联系平台与作者并注明出处 1.大数据与数据库 1) 从Hadoop到数据库 大家知道在计算机领域,关系数据库大量用于数据存储和维护的场景.大数据的出现后,很多公司转而选择像 Hadoop/Spark 的大数据解决方案. Hadoop使用分布式文件系统,用于存储大…
大数据时代的IT架构设计(来自互联网.银行等领域的一线架构师先进经验分享) IT架构设计研究组 编著   ISBN 978-7-121-22605-2 2014年4月出版 定价:49.00元 208页 16开 编辑推荐 l  一书在手,架构无忧 l  三十位一线架构师真知实践 l  百位顶级架构师献计献策 l  十万文字尽显架构精华 内容提要 <大数据时代的IT架构设计>以大数据时代为背景,邀请著名企业中的一线架构师,结合工作中的实际案例展开与架构相关的 讨论.<大数据时代的IT架构设计…
大数据时代之hadoop(一):hadoop安装 大数据时代之hadoop(二):hadoop脚本解析 大数据时代之hadoop(三):hadoop数据流(生命周期) 大数据时代之hadoop(四):hadoop 分布式文件系统(HDFS) hadoop的核心分为两块,一是分布式存储系统-hdfs,这个我已经在上一章节大致讲了一下,还有一个就是hadoop的计算框架-mapreduce. mapreduce事实上就是一个移动式的基于key-value形式的分布式计算框架. 其计算分为两个阶段,m…
原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法) 本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘,同样的利用微软案例数据进行简要总结. 应用场景介绍 通过上一篇中我们采用Microsoft决策树分析算法对已经发生购买行为的订单中的客户属性进行了分析,可以得到几点重要的信息,这里做个总结: 1.对于影响购买自行车行为最重要的因素为:家中是否有小汽车,其次是年龄,再次是地域 2.通过折叠树对于比较…
Atitit 大json文件的结构化查看解决方案,高性能的jsonview  attilax总结.docx 1.1. 实现目标:1 1.2. 实现key与value类型的..一直分析到非 jsonobject jsonarray位置..1 1.3. 现存问题  fastjson使用string格式的内容,导致文件内容大小依然存在上限..1 1.4. 效果2 1.5. 参考资料4 选型了很多jsonviewer,只能对小数据量的文件生效..一旦涉及到9M左右的json文件,就都统统歇菜了.. 只好…
转载自:http://www.daniubiji.cn/archives/538 什么叫大数据 “大”,说的并不仅是数据的“多”!不能用数据到了多少TB ,多少PB 来说. 对于大数据,可以用四个词来表示:大量,多样,实时,价值. 大量:这个大家都知道,想百度,淘宝,腾讯,Facebook,Twitter等网站上的一些信息,这肯定算是大数据了,都要存储下来. 多样:数据的多样性,是说数据可能是结构型的数据,也可能是非结构行的文本,图片,视频,语音,日志,邮件等. 实时:大数据需要快速的,实时的进…
大数据被誉为21世纪发展创造的新动力,BI(商业智能)成为当下最热门的数据应用方案.据资料显示:当前中国大数据IT投资最高的为五个行业中,互联网最高.其次是电信.金融.政府和医疗.而在金融行业中,银行拨得头筹,其次才是证券和保险. 如何有效应用大数据.云计算等新信息技术,创造价值和财富,创造未来,是我们面临的巨大机遇和挑战. 下面把银行大数据应用做个详细全面的介绍. 一.大数据金融应用场景 从大数据技术特性以及银行近几年的应用探索来看,大数据在银行商业智能方面的应用主要体现在以下几个方面: 1.…
“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第8期互动问答分享] Q1:spark线上用什么版本好? 建议从最低使用的Spark 1.0.0版本,Spark在1.0.0开始核心API已经稳定: 从功能的角度考虑使用最新版本的Spark 1.0.2也是非常好的,Spark 1.0.2在Spark 1.0.1的基础上做了非常多的改进: Spark 1.0.2改进参考 http://spark.apache.org/releases/spark-release-1-0-2.ht…
商业智能(BI,Business Intelligence).它是一套完整的解决方式,用来将企业中现有的数据进行有效的整合,高速准确的提供报表并提出决策根据.帮助企业做出明智的业务经营决策.     商业智能的概念最早在1996年提出. 当时将商业智能定义为一类由数据仓库(或数据集市).查询报表.数据分析.数据挖掘.数据备份和恢复等部分组成的.以帮助企业决策为目的技术及其应用. 眼下,商业智能通常被理解为将企业中现有的数据转化为知识.帮助企业做出明智的业务经营决策的工具.商务智能系统中的数据来自…
分布式结构化存储系统-HBase访问方式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. HBase提供了多种访问方式,包括HBase shell,HBase API,数据收集组件(比如Flume,Sqoop等),上层算框架以及Apache Phoenix等,本篇博客将详细介绍这几种方式. 一.HBase Shell HDFS提供了丰富的shell命令让用户更加容易管理HBase集群,你可以通过“$HBASE_HOME/bin/hbase shell”命令进入交互式命令后,并输…
随着大数据时代的到来,数据挖掘的重要性就变得显而易见,几种作为最低层的简单的数据挖掘算法,现在利用微软数据案例库做一个简要总结. 应用场景介绍 其实数据挖掘应用的场景无处不在,很多的环境都会应用到数据挖掘,之前我们没有应用是因为还没有学会利用数据,或者说还没有体会到数据的重要性,现在随着IT行业中大数据时代的到来,让我一起去拥抱大数据,闲言少叙,此处我们就列举一个最简单的场景,一个销售厂商根据以往的销售记录单,通过数据挖掘技术预测出一份可能会购买该厂商产品的客户名单,我相信这也是很多销售机构想要…
柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航) 二.起航 本章节,柯南君将从几个层面,用官网例子讲解一下RabbitMQ的实操经典程序案例,让大家重新回到经典“Hello world!”(The simplest thing that does something )时代,RabbitMQ 支持N多种客户端(client),这里无法一一讲解,暂定java client,有时间的情况下,在弥补一下. 事先,先普及一下图标(我们会在下面的事例中,会…
一.MQ(Message Queue) 即 消息队列,一般用于应用系统解耦.消息异步分发,能够提高系统吞吐量.MQ的产品有很多,有开源的,也有闭源,比如ZeroMQ.RabbitMQ. ActiveMQ.Kafka/Jafka.Kestrel.Beanstalkd.HornetQ.Apache Qpid.Sparrow.Starling.Amazon SQS.MSMQ等,甚至Redis也可以用来构造消息队列.至于如何取舍,取决于你的需求. 由于工作需要和兴趣爱好,曾经写过关于RabbitMQ的系…