LRU 实现缓存】的更多相关文章

四种实现方式 LRU 1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的…
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的.周期性的…
概念 LRU(least recently used)就是将最近不被访问的数据给淘汰掉,LRU基于一种假设:认为最近使用过的数据将来被使用的概率也大,最近没有被访问的数据将来被使用的概率比较低. 原理 LRU一般通过链表形式来存放缓存数据,新插入或被访问的数据放在链表头部,超过一定阈值后,自动淘汰链表尾部的数据.下图很形象的说明了LRU缓存淘汰过程.(图片来自网络) 步骤: 1.新插入A, 将A放置在队列头部 2.新插入B, 将B放置在队列头部, A自动推举次席. 3.新插入C, 将C放置在队列…
LeetCode题解: LRU Cache 缓存设计 2014年12月10日 08:54:16 邴越 阅读数 1101更多 分类专栏: LeetCode   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/leread/article/details/41841965 设计并实现最近最久未使用(Least Recently Used)缓存. 链接:https://oj.leetcode.c…
分页: PageHelper的优点是,分页和Mapper.xml完全解耦.实现方式是以插件的形式,对Mybatis执行的流程进行了强化,添加了总数count和limit查询.属于物理分页. 一.首先注入依赖: <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pagehelper</artifactId> <version>4.2.1</versi…
使用单链表实现LRU(Least Recently Used)淘汰缓存机制 需求:存在一个单链表,在单链表尾部的都是越早之前添加的元素. 当元素被访问到时,会添加进缓存(也就是这个单链表中). 如果这个元素在之前已经被缓存到了链表中,则将这个元素从原来的位置删除,用头插法放到链表的头部. 如果这个元素不在链表中,则根据链表的容量进行判断 缓存容量未满时,直接用头插法,放到链表的头部 缓存容量已满时,首先删除链表尾部的元素,再将元素进行插入到头部. 创建Node对象 package com.cod…
一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什么东西放进来呢?有没有什么判定标准呢?页面置换算法就是干这个的,企图通过之前的行为预测到之后的行为(这是概率问题),而LRU就是其中的一种,它的基本思想就是既然有一块数据,最近的一段时间内它是最少访问的,这说明在这之后它也可能是最少访问的,如果非要移除一个的话,我只好把它置换出内存了. 总结一下:…
LRU(Least Recently Used)算法是缓存技术中的一种常见思想,顾名思义,最近最少使用,也就是说有两个维度来衡量,一个是时间(最近),一个频率(最少).如果需要按优先级来对缓存中的K-V实体进行排序的话,需要考虑这两个维度,在LRU中,最近使用频率最高的排在前面,也可以简单的说最近访问的排在前面.这就是LRU的大体思想. 在操作系统中,LRU是用来进行内存管理的页面置换算法,对于在内存中但又不用的数据块(内存块)叫做LRU,操作系统会根据哪些数据属于LRU而将其移出内存而腾出空间…
在最近的面试中,我曾被多次问到,怎么实现一个最近最少使用(LRU)的缓存.缓存可以通过哈希表来实现,然而为这个缓存增加大小限制会变成另一个有意思的问题.现在我们看一下怎么实现. 最近最少使用缓存的回收 为了实现缓存回收,我们需要很容易做到: 查询出最近最晚使用的项 给最近使用的项做一个标记 链表可以实现这两个操作.检测最近最少使用的项只需要返回链表的尾部.标记一项为最近使用的项只需要从当前位置移除,然后将该项放置到头部.比较困难的事情是怎么快速的在链表中找到该项. 哈希表的帮助 看一下我们工具箱…
LRU:Least Recently used 最近最少使用 1.使用LinkedHashMap实现 inheritance实现方式 继承map类 可以使用Collections.synchronizedMap方式实现线程安全的操作 public class LruCache<K,V> extends LinkedHashMap<K,V> { private final int MAX_CACHE_SIZE; public LruCache(int cacheSize) { sup…
在最近的面试中,我曾被多次问到,怎么实现一个最近最少使用(LRU)的缓存.缓存可以通过哈希表来实现,然而为这个缓存增加大小限制会变成另一个有意思的问题.现在我们看一下怎么实现. 最近最少使用缓存的回收 为了实现缓存回收,我们需要很容易做到: 查询出最近最晚使用的项 给最近使用的项做一个标记 链表可以实现这两个操作.检测最近最少使用的项只需要返回链表的尾部.标记一项为最近使用的项只需要从当前位置移除,然后将该项放置到头部.比较困难的事情是怎么快速的在链表中找到该项. 哈希表的帮助 看一下我们工具箱…
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(…
计算机中的缓存大小是有限的,如果对所有数据都缓存,肯定是不现实的,所以需要有一种淘汰机制,用于将一些暂时没有用的数据给淘汰掉,以换入新鲜的数据进来,这样可以提高缓存的命中率,减少磁盘访问的次数. LRU(Least Recently Used 最近最少使用)算法有两种策略(均以队列的方式实现),一种是不调整的,另外一种是随时进行调整的,即缓存命中后,将这个数据缓存项移到LRU队列的最前端. 例如,缓存容量为4,顺序访问数据项1  5  1  3  5  2  4  1  2 第一种策略:首先读取…
缓存命中率 命中:直接从缓存中读取到想要的数据. 未中:缓存中没有想要的数据,还需要到数据库进行一次查询才能读取到想要的数据. 命中率越高,数据库查询的次数就越少. 读取缓存的速度远比数据库查询的速度高得多. 所以命中率越高,性能越高. LRU Memcached使用的是LRU(Least Recently Used最近最少使用)算法来回收缓存,将那些属于LRU的数据移出内存,从而腾出空间来加载另外的数据. Memcached的内存分配原理 上图涉及了slab_class.slab.page.c…
基于列表+Hash的LRU算法实现. 访问某个热点时,先将其从原来的位置删除,再将其插入列表的表头 为使读取及删除操作的时间复杂度为O(1),使用hash存储热点的信息的键值 class LRUCaceh(): def __init__(self, size=5): ''' 默认队列的长度为5 使用列表来维护,使用字典来查询 ''' self.size = size self.cache = dict() self.key = [] ​ def get(self, key): ''' 获取缓存中…
LRU cache LRU(最近最少使用)是一种常用的缓存淘汰机制.当缓存大小容量到达最大分配容量的时候,就会将缓存中最近访问最少的对象删除掉,以腾出空间给新来的数据. 实现 (1)单线程简单版本 ( 来源:力扣(LeetCode)链接:leetcode题目) 题目: 设计和构建一个“最近最少使用”缓存,该缓存会删除最近最少使用的项目.缓存应该从键映射到值(允许你插入和检索特定键对应的值),并在初始化时指定最大容量.当缓存被填满时,它应该删除最近最少使用的项目.它应该支持以下操作: 获取数据 g…
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.set(…
在您的UI中显示单个图片是非常简单的,如果您需要一次显示很多图片就有点复杂了.在很多情况下 (例如使用 ListView, GridView 或者 ViewPager控件), 显示在屏幕上的图片以及即将显示在屏幕上的图片数量是非常大的(例如在图库中浏览大量图片). 在这些控件中,当一个子控件不显示的时候,系统会重用该控件来循环显示 以便减少对内存的消耗.同时垃圾回收机制还会 释放那些已经载入内存中的Bitmap资源(假设您没有强引用这些Bitmap).一般来说这样都是不错的,但是在用户来回滑动屏…
前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发生的概率呢?之前我们一直在使用SoftReference软引用,SoftReference是一种现在已经不再推荐使用的方式,因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的对象,这让软引用变得不再可靠,所以今天我们来认识一种新的缓存处理算法…
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的…
LRU LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据.而往往最常读取的,也是读取次数最多的,所以,利用LRU缓存,我们能够提高系统的performance. LRU实现 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. LRU分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的.周期性的批量…
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的.周期性的…
原文地址:http://www.360doc.com/content/13/0805/15/13247663_304901967.shtml 参考地址(一系列关于缓存的,后面几篇也都在这里有):http://www.360doc.com/userhome.aspx?userid=13247663&cid=48# 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几…
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的.周期性的…
LRU全称是Least Recently Used,即最近最久未使用的意思. LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰. 实现LRU       1.用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中.每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0.当数…
(转自:http://flychao88.iteye.com/blog/1977653) 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢…
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的.周期性的…
前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发生的概率呢?之前我们一直在使用SoftReference软引用,SoftReference是一种现在已经不再推荐使用的方式,因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的对象,这让软引用变得不再可靠,所以今天我们来认识一种新的缓存处理算法…
前言 我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来.缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据.常用淘汰算法有 LRU,LFU,FIFO,这篇文章我们聊聊 LRU 算法. LRU 简介 LRU 是 Least Recently Used 的缩写,这种算法认为最近使用的数据是热门数据,下一次很大概率将会再次被使用.而最近很少被使用的数据,很大概率下一次不再用到.当缓存容量的满时候,优先淘汰最近很少使用…
  LRU原理与分析 LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据.而往往最常读取的,也是读取次数最多的,所以,利用LRU缓存,我们能够提高系统的performance. LRU实现 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. LRU分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的…