求矩阵的模: function count = juZhenDeMo(a,b) [r,c] = size(a);%求a的行列 [r1,c1] = size(b);%求b的行列 count = 0; for j=1:r-r1+1%所求的行数中取 for i=1:c-c1+1%所有的列数中取 d = a(j:j+r1-1,i:i+c1-1); e = double(d==b); if(sum(e(:))==r1*c1) count = count + 1; end end end<pre name=…
http://blog.163.com/bzm_square/blog/static/9355546320129582254842/ PS: 一种有关于矩阵的思维方法.....WiKi 向量空间,不定点定理,仿射变换等数学术语请参考 Ron Goldman 计算机图形学与几何造型导论 From http://blog.csdn.net/myan/article/details/647511 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国…
A brief summary of SVD: An original matrix Amn is represented as a muliplication of three matrices: Amn = UmmSmnVnnT The columns of U are the orthonormal engenvectors of AAT descendingly ordered by the corresponding eigenvalues, and the columns of V …
高阶奇异值分解(High Order Singular Value Decomposition, HOSVD) 奇异值分解SVD(Singular Value Decomposition)是线性代数中一种重要的矩阵分解. 奇异值|A|=0 奇异值分解法是线性代数和矩阵论中一种重要的矩阵分解法,在信号处理.统计学等领域有重要应用. 定义:设A为复数域内m*n阶矩阵, A*表示A的共轭转置矩阵,A*A的n个非负特征值的算术平方根叫作矩阵A的奇异值.记为σi(A). 如果把A*A的特征值记为λi…