Checkpoint & cache & persist】的更多相关文章

checkpoint checkpoint(检查点)是Spark为了避免长链路,大计算量的Rdd不可用时,需要长时间恢复而引入的.主要就是将通过大量计算而获得的这类Rdd的数据直接持久化到外部可靠的存储体系中(一般为hdfs文件).在以后再需要从这个Rdd获取数据时,直接从检查点获取数据从而避免了从头重新计算Rdd的数据. 生成checkpoint checkpoint是在job执行结束后再启动专门的checkpoint job生成的(完成job的action方法之后),也就是说需要checkp…
cache只有一个默认的缓存级别MEMORY_ONLY ,而persist可以根据StorageLevel设置其它的缓存级别. cache以及persist都不是action. 被重复使用的(但是)不能太大的RDD需要cache cache 只使用 memory,checkpoint写磁盘 rdd.persist(StorageLevel.DISK_ONLY) 与 checkpoint 的区别: persist将 RDD 的 partition 持久化到磁盘,但该 partition 由 blo…
为了增强容错性和高可用,避免上游RDD被重复计算的大量时间开销,Spark RDD设计了包含多种存储级别的缓存和持久化机制,主要有三个概念:Cache.Persist.Checkout. 1.存储级别介绍(StorageLevel) 存储级别以一个枚举类StorageLevel定义,分为以下12种: StorageLevel枚举类存储级别 存储级别 使用空间 CPU时间 是否在内存中 是否在磁盘上 备注 NONE 否 否 否 否 不使用任何存储 DISK_ONLY 低 高 否 是 只存在磁盘上…
问题:cache 与 checkpoint 的区别? 关于这个问题,Tathagata Das 有一段回答: There is a significant difference between cache and checkpoint. Cache materializes the RDD and keeps it in memory and/or disk(其实只有 memory). But the lineage(也就是 computing chain) of RDD (that is, s…
RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的.不可变.可分区,里面的元素可分布式并行计算的数据集. RDD是一个很抽象的概念,不易于理解,但是要想学好Spark,必须要掌握RDD,熟悉它的编程模型,这是学习Spark其他组件的基础.笔者在这里从名字和几个重要的概念给大家一一解读: Resilient(弹性的) 提到大数据必提分布式,而在大规模的分布式集群中,任何一台服务器随时都有可能出现故障,如果一个task…
一.Checkpoint相关源码分为四个部分 1.Checkpoint的基本使用:spark_core   &   spark_streaming 2.初始化的源码 3.Checkpoint的job生成及执行的过程 4.读Checkpoint的过程 二.Checkpoint的基本使用 Checkpoint可以是还原药水.辅助Spark应用从故障中恢复.SparkStreaming宕机恢复,适合调度器有自动重试功能的.对于 SparkCore 则适合那些计算链条超级长或者计算耗时的关键点进行 Ch…
1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数据流的方式不能够复用曾经的结果或者中间的结果; 2. RDD弹性数据集 特点: A)自动的进行内存和磁盘数据的存储切换: B) 基于lineage的高效容错: C) Task如果失败会自动进行重试 D) Stage如果失败会自动进行重试,而且只会计算失败的分片; E) Checkpoint和pers…
Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(cache,persist,checkpoint) 如何选择一种最合适的持久化策略?     默认MEMORY_ONLY, 性能很高, 而且不需要复制一份数据的副本,远程传送到其他节点上(BlockManager中的BlockTransferService),但是这里必须要注意的是,在实际的生产环境中,…
目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standalone模式的Spark架构 YARN模式的Spark架构 应用程序资源构建 API WordCount示例 RDD构建 RDD缓存与持久化 RDD分区数 共享变量 RDD Operation RDD Operation隐式转换 RDD[T]分区Operation RDD[T]常用聚合Operati…
一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化,持久化的单位是partition.cache和persist都是懒执行的.必须有一个action类算子触发执行.checkpoint算子不仅能将RDD持久化到磁盘,还能切断RDD之间的依赖关系. 二.具体算子 1. cache 默认将RDD的数据持久化到内存中.cache是懒执行. chche (…