文章目录 1.朴素贝叶斯法的Python实现 1.1 准备数据:从文本中构建词向量 1.2 训练算法:从词向量计算概率 1.3 测试算法:根据现实情况修改分类器 1.4 准备数据:文档词袋模型 2.示例1:使用朴素贝叶斯过滤垃圾邮件 2.1 准备数据:切分文本 2.2 测试算法:使用朴素贝叶斯进行交叉验证 3.示例2:使用贝叶斯分类器从个人广告中获取区域倾向 参考资料: 1.朴素贝叶斯法的Python实现 本小节将以文本分类为例,介绍朴素贝叶斯实现的整个过程. 朴素贝叶斯法相关概念及原理中提到,…
前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾短信进行过滤,在最后对分类的错误率进行了计算. 与决策树分类和k近邻分类算法不同,贝叶斯分类主要借助概率论的知识来通过比较提供的数据属于每个类型的条件概率, 将他们分别计算出来然后预测具有最大条件概率的那个类别是最后的类别.当然样本越多我们统计的不同类 型的特征值分布就越准确,使用此分布进行预测则会更加准确.…
2017-12-15 19:08:50 朴素贝叶斯分类器是一种典型的监督学习的算法,其英文是Naive Bayes.所谓Naive,就是天真的意思,当然这里翻译为朴素显得更学术化. 其核心思想就是利用贝叶斯公式来计算各个类别的概率,最后从中选择概率最大的那个作为最终的结果. 贝叶斯公式:…
第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类. 贝叶斯理论 & 条件概率 贝叶斯理论 我们现在有一个数据集,它由两类数据组成,数据分布如下图所示: 我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(x,y) 表示数据点 (x,y)…
总结 朴素贝叶斯法实质上是概率估计. 由于加上了输入变量的各个参量条件独立性的强假设,使得条件分布中的参数大大减少.同时准确率也降低. 概率论上比较反直觉的一个问题:三门问题:由于主持人已经限定了他打开的那扇门是山羊,即已经有前提条件了,相对应的概率也应该发生改变,具体公式啥的就不推导了.这个问题与朴素贝叶斯方法有关系,即都用到了先验概率. 其中有两种方法来计算其概率分布. 极大似然法估计: 贝叶斯估计:无法保证其中所有的情况都存在,故再求其条件概率的时候加上一个偏置项,使其所有情况的条件概率在…
1.名词解释 贝叶斯定理,自己看书,没啥说的,翻译成人话就是,条件A下的bi出现的概率等于A和bi一起出现的概率除以A出现的概率. 记忆方式就是变后验概率为先验概率,或者说,将条件与结果转换. 先验概率:某件事情发生概率 后验概率:某件事情发生后,由于某个原因引起的概率大小. 2.朴素贝叶斯代码 #include <cstdio> #include <Windows.h> #include "LBayesClassifier.h" ; ; int main()…
简介 Naive Bayesian算法 也叫朴素贝叶斯算法(或者称为傻瓜式贝叶斯分类) 朴素(傻瓜):特征条件独立假设 贝叶斯:基于贝叶斯定理 这个算法确实十分朴素(傻瓜),属于监督学习,它是一个常用于寻找决策面的算法. 基本思想 (1)病人分类举例 有六个病人 他们的情况如下: 症状 职业 病名 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工人 脑震荡 头痛 建筑工人 感冒 打喷嚏 教师 感冒 头痛 教师 脑震荡 根据这张表 如果来了第七个病人 他是一个 打喷嚏 的 建筑工人 那么他患上…
目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布,高斯分布) Python代码(sklearn库) 先验概率与后验概率 引例 想象有 A.B.C 三个不透明的碗倒扣在桌面上,已知其中有(且仅有)一个瓷碗下面盖住一个鸡蛋.此时请问,鸡蛋在 A 碗下面的概率是多少?答曰 1/3. 现在发生一件事:有人揭开了 C 碗,发现 C 碗下面没有蛋.此时再问:鸡…
作者:龙心尘 && 寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50597149 http://blog.csdn.net/han_xiaoyang/article/details/50616559 声明:版权所有,转载请联系作者并注明出处 1. 引言 贝叶斯方法是一个历史悠久,有着坚实的理论基础的方法,同时处理很多问题时直接而又高效,很多高级自然语言处理模型也可以从它演化而来.因此,学习贝…
机器学习就像酿制葡萄酒--好的葡萄(数据)+好的酿酒方法(机器学习算法) 监督分类 supervised classification Features -->Labels 保留10%的数据作为测试数据集 监督学习之朴素贝叶斯 Naive Bayes--寻找决策面 scikit-learn使用入门 googlesearch sklearn+Naive Bayes 关于sklearn版本 视频--基于v0.17 项目--基于v0.18 sklearn的现在稳定版为0.18,官方文档也升级到了0.1…