OLAP 大表和小表并行hash join】的更多相关文章

一个表50MB 一个表10GB 50M表做驱动表,放在PGA里 这时候慢在对对 10g 的全表扫描 对10个G扫描块 需要开并行 我有这样一个算法 一个进程 读 50mb 8进程 来 扫描 10gb 一个 进程扫描 1.25gb 50MB 都分发到 8个进程 超大表和小表之间做HASH JOIN,一般会启用用并行,ORACLE在并行HASH JOIN的时候会用到很多技术,比如 HASH HASH, 或者BROADCAST 对于超大表和小表做HASH JOIN,一定要让小表进行广播(Broadca…
HASH JOIN的模式 hash join有三种工作模式,分别是optimal模式,onepass模式和multipass模式,分别在v$sysstat里面有对应的统计信息: SQL> select name, value from v$sysstat where name like '%workarea executions%'; optimal模式 optimal模式就是从build table上获取的结果集比较小,可以把整个hash table都建立在用户可以使用的内存区域里.下面这张图…
SQL语句: SELECT /*+parallel(t1 16)*/ T1.DATA_DATE, T1.ACCT_NO, T1.ACCT_ORD, T1.ACCT_NO_PK, T1.ACCT_BAL, T1.D_CMP_BAL, T1.M_CMP_BAL, T1.Y_CMP_BAL, T1.FLAG, T1.ACCT_FLAG, T1.TERM, T1.TERM_FLAG, T1.CUR_CODE, NVL(T5.CUR_NAME, T1.CUR_NAME) AS CUR_NAME, T1.S…
一.switch...case...的格式 switch(表达式) { case 常量表达式1: 语句; break; case 常量表达式2: 语句; break; case 常量表达式3: 语句; break; case 常量表达式3: 语句; break; default: 语句; break; } switch要求: 1.case后面必须是常量表达式 2.case后常量表达式的值不能一样 3.switch后面表达式必须为整数,不能为浮点数 4.case后的语句可以有多个且不用花括号括起来…
Hash算法原理 对于什么是Hash算法原理?这个问题有点难度,不是很好说清楚,来做一个比喻吧:我们有很多的小猪,每个的体重都不一样,假设体重分布比较平均(我们考虑到公斤级别),我们按照体重来分,划分成100个小猪圈. 然后把每个小猪,按照体重赶进各自的猪圈里,记录档案. 好了,如果我们要找某个小猪怎么办呢?我们需要每个猪圈,每个小猪的比对吗? 当然不需要了. 我们先看看要找的这个小猪的体重,然后就找到了对应的猪圈了. 在这个猪圈里的小猪的数量就相对很少了. 我们在这个猪圈里就可以相对快的找到我…
我们对hash join的常见误解,一般包括两个: 第一个误解:是我们经常以为hash join需要对两个做join的表都做全表扫描 第二个误解:是经常以为hash join会选择比较小的表做build table 纠正第一个误解: 我们经常以为hash join需要对两个做join的表都做全表扫描,但实际情况HASH JOIN是不会限制SQL的访问方法的.我们用下面的测试来验证: --创建测试表probe_tab: SQL> create table probe_tab initrans no…
给出两个表,A和B,A和B表的数据量, 当A小于B时,用exists select * from A where exists (select * from B where A.id=B.id) exists的实现,相当于外表循环,每次循环对内表进行查询? for i in A for j in B if j.id == i.id then .... 相反,如果A大于B的时候,则用in select * from A where id in (select id from B) 这种在逻辑上类似…
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] 小表join大表转为小表broadcast+map大表实现.具体为: 普通的join是会shuffle的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join,此时如果发生数据倾斜,影响处理性能,而此时恰好一…
大小表区分按照数据量的大小区分: 通常对于小表,Oracle建议通过全表扫描进行数据访问,对于大表则应该通过索引以加快数据查询,当然如果查询要求返回表中大部分或者全部数据,那么全表扫描可能仍然是最好的选择.从V$SYSSTAT视图中,我们可以查询得到关于全表扫描的系统统计信息: SQL> col name for a30 SQL> select name,value from v$sysstat2 where name in ('table scans (short tables)','tab…
在了解之前要先了解对应语法 in 与 exist. IN: select * from A where A.id in (select B.id from B) in后的括号的表达式结果要求之输出一列字段.与之前的搜索字段匹配,匹配到相同则返回对应行. mysql的执行顺序是先执行子查询,然后执行主查询,用子查询的结果按条匹配主查询. EXIST: select * from A where exists(select * from B where B.id= A.id) exist后的括号里则…
引用地址:https://blog.csdn.net/qq_30349961/article/details/82662550 http://blog.sina.com.cn/s/blog_6ff05a2c01016j7n.html 经常看到一些Hive优化的建议中说当小表与大表做关联时,把小表写在前面,这样可以使Hive的关联速度更快,提到的原因都是说因为小表可以先放到内存中,然后大表的每条记录再去内存中检测,最终完成关联查询.这样的原因看似合理,但是仔细推敲,又站不住脚跟. 多小的表算小表?…
本博文的主要内容如下: Hive文件存储格式 Hive 操作之表操作:创建外.内部表 Hive操作之表操作:表查询 Hive操作之表操作:数据加载 Hive操作之表操作:插入单表.插入多表 Hive语法结构:where 查询.all 和 distinct 选项.基于 Partition 的查询.基于 HAVING 的查询. LIMIT 限制查询. GROUP BY 分组查询. ORDER  BY 排序查询.SORT BY 查询.DISTRIBUTE BY 排序查询.CLUSTER BY 查询 H…
哈希连接(HASH JOIN) 前文提到,嵌套循环只适合输出少量结果集.如果要返回大量结果集(比如返回100W数据),根据嵌套循环算法,被驱动表会扫描100W次,显然这是不对的.看到这里你应该明白为 什么有些SQL优化了跑几秒,没优化跑几个小时甚至跑1天都不出结果.返回大量结果集适合走HASH JOIN.HASH JOIN算法非常复杂,这里就不讨论了 下面看一个HASH JOIN的例子(基于SCOTT,Oracle11gR2) SQL> select * from table(dbms_xpla…
目前为止,典型的连接类型有3种: Sort merge join(SMJ排序-合并连接):首先生产driving table需要的数据,然后对这些数据按照连接操作关联列进行排序:然后生产probed table需要的数据,然后对这些数据按照与driving table对应的连接操作列进行排序:最后两边已经排序的行被放在一起执行合并操作.排序是一个费时.费资源的操作,特别对于大表.所以smj通常不是一个特别有效的连接方法,但是如果driving table和probed table都已经预先排序,…
Join Operations ? SORT-MERGE JOIN – Sorts tables on the join key and then merges them together – Sorts are expensive ? NESTED LOOPS – Retrieves a row from one table and finds the corresponding rows in the other table – Usually best for small numbers…
Hash Join是Oracle CBO时代经常出现的一种连接方式,对海量数据处理时经常出现在执行计划里.本篇的上篇(http://space.itpub.net/17203031/viewspace-697442) 介绍了Hash Join的一些外部特征和操作算法流程,下面我们一起看下一些影响到Hash Join的重要参数和内部指标. 3.Hash Join相关参数 Hash Join是CBO优化器才能生成的执行计划操作,如果是选择了RBO就不能生成包括Hash Join的执行计划.此外,与H…
表连接方式及使用场合 NESTED LOOP 对于被连接的数据子集较小的情况,nested loop连接是个较好的选择.nested loop就是扫描一个表,每读到一条记录,就根据索引去另一个表里面查找,没有索引一般就不会是 nested loops.一般在nested loop中, 驱动表满足条件结果集不大,被驱动表的连接字段要有索引,这样就走nstedloop.如果驱动表返回记录太多,就不适合nested loops了.如果连接字段没有索引,则适合走hash join,因为不需要索引. 可用…
Hash Join只能用于相等连接,且只能在CBO优化器模式下.相对于nested loop join,hash join更适合处理大型结果集       Hash Join的执行计划第1个是hash表(build table),第2个探查表(probe table),一般不叫内外表,nested loop才有内外表       Hash表也就是所谓的内表,探查表所谓的外表       两者的执行计划形如:       nested loop           outer table    …
[20180705]关于hash join 2.txt --//昨天优化sql语句,执行计划hash join right sna,加入一个约束设置XX字段not null,逻辑读从上万下降到50.--//关于hash join派生的执行计划,而且hash join还在外连接时支持右关联,特别是11g,加入NULL-AWARW/Single Null-Aware的判断,许--//多我自己很混乱,做一点总结. --//NA =>  Null-Aware.--//SNA => Single Nul…
Mysql 系列文章主页 =============== 本文将以真实例子来讲解小表驱动大表(In,Exists区别) 1 准备数据 1.1 创建表.函数.存储过程 参照  这篇(调用函数和存储过程批量插入数据)  文章中的第 1-7 步,注意,不要执行第8步 1.2 插入数据 现在来执行第8步. 1.2.1 向 Department 表中插入 100 条记录 CALL insert_dept(, ) 1.2.2 向 Employee 表中插入 100000 条记录 CALL insert_em…
1. 优化原则:小表驱动大表,即小数据集驱动大数据集. select * from A where id in (select id from B) 等价于: for select id from B for select * from A where A.id = B.id 当B表的数据集必须小于A的数据集时,用in优于exists. select * from A where exists (select 1 from B where B.id = A.id) 等价于: for select…
前言:本来小表驱动大表的知识应该在前面就讲解的,但是由于之前并没有学习数据批量插入,因此将其放在这里.在查询的优化中永远小表驱动大表. 1.为什么要小表驱动大表呢 类似循环嵌套 for(int i=5;.......) { for(int j=1000;......) {} } 如果小的循环在外层,对于数据库连接来说就只连接5次,进行5000次操作,如果1000在外,则需要进行1000次数据库连接,从而浪费资源,增加消耗.这就是为什么要小表驱动大表. 2.数据准备 根据MySQL高级知识(十)—…
SWAP_JOIN_INPUTS Oracle Hint(处理hash join强制大表(segment_size大)作为被驱动表) swap_join_inputs是针对哈希连接的hint,它的含义是让优化器交换原哈希连接的驱动表和被驱动表的顺序,即在依然走哈希连接的情况下让原哈希连接的驱动表变被驱动表,让原哈希连接的被驱动表变为驱动表. 注意,在swap_join_inputs hint中指定的目标表应该是原哈希连接中的被驱动表,否则oracle会忽略该hint. /*+ swap_join…
一.为什么要用小表驱动大表 1.驱动表的定义 当进行多表连接查询时, [驱动表] 的定义为: 1)指定了联接条件时,满足查询条件的记录行数少的表为[驱动表] 2)未指定联接条件时,行数少的表为[驱动表](Important!) 忠告:如果你搞不清楚该让谁做驱动表.谁 join 谁,请让 MySQL 运行时自行判断 既然“未指定联接条件时,行数少的表为[驱动表]”了,而且你也对自己写出的复杂的 Nested Loop Join 不太有把握(如下面的实例所示),就别指定谁 left/right jo…
4.大表join小表优化 和join相关的优化主要分为mapjoin可以解决的优化(即大表join小表)和mapjoin无法解决的优化(即大表join大表),前者相对容易解决,后者较难,比较麻烦. 首先介绍大表join小表优化.以销售明细表为例来说明大表join小表的场景. 假如供应商进行评级,比如(五星.四星.三星.二星.一星),此时因为人员希望能够分析各供应商星级的每天销售情况及其占比. 开发人员一般会写出如下SQL: select  seller_star, count(order_id)…
//假设一个for循环 ; $i < ; $i++) { ; $i < ; $j++) { } } ; $i < ; $i++) { ; $i < ; $j++) { } } 看以上两个for循环,总共循环的次数是一样的.但是对于mysql数据库而言,并不是这样了,我们尽量选择第②个for循环,也就是小表驱动大表.数据库最伤神的就是跟程序链接释放,第一个建立了10000次链接,第二个建立了50次.假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次:相反建立了上百…
原来自己也是一直认为oralce会选择小表作为驱动表,以前一直也没注意,今天看了落落大神的实验,才发现,oralce查询时不一定选择小表作为驱动表. 如果对大表增加了约束,大表也会作为驱动表. 实验见落落大神博客 http://blog.csdn.net/robinson1988/article/details/5394365…
需求: 小表数据量20w条左右,大表数据量在4kw条左右,需要根据大表筛选出150w条左右的数据并关联更新小表中5k左右的数据. 性能问题: 对筛选条件中涉及的字段加index后,如下常规的update语句仍耗时半小时左右. UPDATE WMOCDCREPORT.DM_WM_TRADINGALL A SET ( A.RELATIONSHIPNO, A.PACKAGE ) = (SELECT B.RELATIONSHIPNO, CASE ' ' ' ') THEN 'BC' ') THEN 'P…
1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去reduce. 样例: select /*+MAPJOIN(b)*/ a.a1,a.a2,b.b2 from tablea a JOIN tableb b ON a.a1=b.b1 在0.7版本号后.也能够用配置来自己主动优化 set hive.auto.convert.join=true;…
小表驱动大表 1.概念 驱动表的概念是指多表关联查询时,第一个被处理的表,使用此表的记录去关联其他表.驱动表的确定很关键,会直接影响多表连接的关联顺序,也决定了后续关联时的查询性能. 2.原则 驱动表的选择遵循一个原则: 在对最终结果集没影响的前提下,优先选择结果集最小的那张表作为驱动表.改变驱动表就意味着改变连接顺序,只有在不会改变最终输出结果的前提下才可以对驱动表做优化选择.外连接的顺序改变就很可能影响结果. 预估结果集的原则: 如果where里没有相应表的筛选条件,无论on里是否有相关条件…