3.spark streaming Job 架构和容错解析】的更多相关文章

一.Spark streaming Job 架构 SparkStreaming框架会自动启动Job并每隔BatchDuration时间会自动触发Job的调用. Spark Streaming的Job 分为两大类: 每隔BatchInterval时间片就会产生的一个个Job,这里的Job并不是Spark Core中的Job,它只是基于DStreamGraph而生成的RDD的DAG而已:从Java角度讲相当于Runnable接口的实现类,要想运行Job需要将Job提交给JobScheduler,在J…
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 Spark Streaming第3章 架构与抽象第4章 Spark Streaming 解析4.1 初始化 StreamingContext4.2 什么是 DStreams4.3 DStream 的输入4.3.1 基本数据源4.3.2 高级数据源4.4 DStream 的转换4.4.1 无状态转化操作…
Spark Streaming揭秘 Day13 数据安全容错(Driver篇) 书接上回,首先我们要考虑的是在Driver层面,有哪些东西需要维持状态,只有在需要维持状态的情况下才需要容错,总的来说,一共有三个组件需要容错: 数据层面:ReceiverBlockTracker,专门负责管理整个SparkStreaming运行数据的元数据,主要用来跟踪数据,需要状态. 逻辑层面:DStream和DStreamGraph,表达依赖关系,在恢复的时候需要恢复计算逻辑级别的依赖关系. 作业生成层面:Jo…
Spark Streaming揭秘 Day12 数据安全容错(Executor篇) 今天,让我们研究下SparkStreaming在Executor端的数据安全及容错机制. 在SparkStreaming中一共使用了两种容错方式: 存储数据副本 支持数据重放 副本机制 这是默认的处理方式,先让我们进入数据存储代码: 我们发现,SparkStreaming中存储是直接调用了blockManager中进行,blockManager本身就支持数据副本,是通过stoageLevel字段的定义. 一直往代…
本节的主要内容: 一.ReceiverTracker的架构设计 二.消息循环系统 三.ReceiverTracker具体实现 Spark Streaming作为Spark Core基础 架构之上的一个应用程序,其中的ReceiverTracker接收到数据之后,具体该怎么进行数据处理呢?看源码ReceiverSupervisorImpl这个类: /** * Concrete implementation of [[org.apache.spark.streaming.receiver.Recei…
https://mp.weixin.qq.com/s/bGXhC9hvDj4lzK7wYYHGDg 目前,我们使用Filebeat监控日志产生的目录,收集产生的日志,打到logstash集群,接入kafka的topic,再由Spark Streaming 进行实时解析,将解析的结果打入Redis缓存,供后续统计查询使用.…
一.架构原理深度剖析 StreamingContext初始化时,会创建一些内部的关键组件,DStreamGraph,ReceiverTracker,JobGenerator,JobScheduler,DStreamGraph, 我们程序中定义很多DStream,中间用很多操作把这些DStream给串起来,这些DStream之间的依赖关系,就是所谓的DStreamGraph, 然后调用StreamingContext.start()方法: 调用StreamingContext.start()方法的…
1.1 创建StreamingContext对象 1.1.1通过SparkContext创建 源码如下: def this(sparkContext: SparkContext, batchDuration: Duration) = { this(sparkContext, null, batchDuration) } 第一参数为sparkContext对象,第二个参数为批次时间: 创建实例: val ssc = new StreamingContext(sc, Seconds(5)) 1.1.…
本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的存在,任何时候宇宙中的事情一直在发生着的. Spark Streaming好比时间,一直遵循其运行机制和架构在不停的在运行,无论你写多或者少的应用程序都跳不出这个范围. import org.apache.spark.SparkConf import org.apache.spark.streami…