【转载】softmax的性质及其实现】的更多相关文章

原文地址:https://segmentfault.com/a/1190000010039529?utm_source=tag-newest softmax函数将任意n维的实值向量转换为取值范围在(0,1)之间的n维实值向量,并且总和为1. 例如:向量softmax([1.0, 2.0, 3.0]) ------> [0.09003057, 0.24472847, 0.66524096] 性质: 因为softmax是单调递增函数,因此不改变原始数据的大小顺序. 将原始输入映射到(0,1)区间,并…
http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/ 卷积神经网络系列之softmax,softmax loss和cross entropy的讲解 我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得…
全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时,softmax配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好. 1. softmax函数及其求导 softmax的函数公式如下: 其中,表示第L层(通常是最后一层)第j个神经元的输入,表示第L层第j个神经元的输出,表示自然常数.注意看,表示了第L层所有神经元的输入之和. softm…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
转自:http://lanqi.org/skills/10939/ 卡特兰数 — 计数的映射方法的伟大胜利 发表于2015年11月8日由意琦行 卡特兰(Catalan)数来源于卡特兰解决凸$n+2$边形的剖分时得到的数列$C_n$,在数学竞赛.信息学竞赛.组合数学.计算机编程等方面都会有其不同侧面的介绍.卡特兰问题的解决过程应用了大量的映射方法,堪称计数的映射方法的典范.为了便于读者理解,我们先介绍一些卡特兰问题的简单变形,再介绍卡特兰问题及其解法. 问题一 进出栈 栈是一种先进后出(FILO,…
转自:http://blog.csdn.net/u014422406/article/details/52805924 sigmoid函数(也叫逻辑斯谛函数): 引用wiki百科的定义: A logistic function or logistic curve is a common “S” shape (sigmoid curve). 其实逻辑斯谛函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线. logistic曲线如下: 同样,我们贴一下wiki百科对sof…
转自:https://www.jianshu.com/p/88bb976ccbd9 1.全连接示例: 2.softmax softmax输入层应和输出层(输出维度与类别数一致)纬度一样,如果不一样,就在输入和softmax层之间进行一层全连接层.…
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson Regression) 在生活中,经常会遇到一类问题需要对一段时间内某一小概率事件的发生次数建模,例如癌症.火灾等. 假设向量x表示引起这一事件发生的因素,向量θ表示因素的权重,则使用hθ(x)=exp(θTx)表示事件发生次数的期望.θTx位于指数位置,意味着其每增加1个单位,将导至事件发生次数的期望值翻…
1. DeepFace:Closing the Gap to Human-Level Performance in Face Verification 最早将深度学习用于人脸验证的开创性工作.Facebook AI实验室出品.动用了百万级的大规模数据库.典型的识别信号提特征+验证信号refine的两步走,对DeepID等后人的工作影响很大. 技术概括 关注了人脸验证流程中的人脸对齐步,采用了比较复杂的3D人脸建模技术和逐块的仿射变换进行人脸对齐.可以解决non-planarity对齐问题. 提出…
本文讨论的关键词:Logistic Regression(逻辑回归).Neural Networks(神经网络) 之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的models,从来没有放在一起观察过,最近通过阅读网络资料,才发现,原来LR和NN之间是有一定的联系的,了解它们之间的联系后,可以更好地理解 Logistic Regression(逻辑回归)和Neural Networks(神经网络) Logistic Regression:典型的二值分类器,用来…
作者:无影随想 时间:2016年1月. 出处:https://zhaokv.com/machine_learning/2016/01/softmax-calculous-perspective.html声明:版权所有,转载请注明出处 Softmax是机器学习中最常用的输出函数之一,网上有很多资料介绍它是什么以及它的用法,但却没有资料来介绍它背后的原理.本文首先简单地介绍一下Softmax,然后着重从数学分析的角度来分析一下它背后的原理. 分类问题是监督学习中最重要的问题之一,它试图根据输入$\b…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(−∞,+∞),而有的时候,目标值的范围是[0,1](可…
基于比较的方法 先通过CNN得到目标特征,然后与参考目标的特征进行比较. 不同在于比较的方法不同而已. 基本概念 数据集Omniglot:50种alphabets(文字或者文明); alphabet中15-40 characters(字母); 每个字母有20drawers(20个不同的人写的). 每次迭代叫mini_batch或者epsiode. N-ways指的是有多个类别,N-shot是指于多少个目标进行比较取均值中的最高值作为最后的结果. 测试集与训练集中样本的类别不一样. cosine(…
本文介绍 wordvec的概念 语言模型训练的两种模型CBOW+skip gram word2vec 优化的两种方法:层次softmax+负采样 gensim word2vec默认用的模型和方法 未经许可,不要转载. 机器学习的输入都是数字,而NLP都是文字: 为了让机器学习应用在NLP上,需要把文字转换为数字,把文字嵌入到数学空间. 1. 词表示: 词的独热表示:onehot (词之间是孤立的) onehot: 思想:假设词表大小为N, 则每个单字表示为N维向量: 每个单字只有1位为1,其他为…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=106) 环境说明 Windows 10 VSCode Python 3.8.10 Pytorch 1.8.1 Cuda 10.2 前言   在<DL基础补全计划(一)---线性回归及示例(Pytorch,平方损失)>(https://blog.csdn.net/u011728480/a…
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只…
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://…
malloc和free函数详解   本文介绍malloc和free函数的内容. 在C中,对内存的管理是相当重要.下面开始介绍这两个函数: 一.malloc()和free()的基本概念以及基本用法: 1.函数原型及说明: void *malloc(long NumBytes):该函数分配了NumBytes个字节,并返回了指向这块内存的指针.如果分配失败,则返回一个空指针(NULL). 关于分配失败的原因,应该有多种,比如说空间不足就是一种. void free(void *FirstByte): …
转载:http://www.jb51.net/article/40193.htm JS里设定延时: 使用SetInterval和设定延时函数setTimeout 很类似.setTimeout 运用在延迟一段时间,再进行某项操作. setTimeout("function",time) 设置一个超时对象 setInterval("function",time) 设置一个超时对象 SetInterval为自动重复,setTimeout不会重复. clearTimeout…
转载地址:https://my.oschina.net/hosee/blog/673628?p=%7b%7bcurrentPage+1%7d%7d 本文就将系统性的串联起那些知识点,方便复习和回顾.本文适合已经有操作系统基础的同学,一起回顾知识,本文并不详细讲解每个算法,本文意在知识串联. 通过一个例子来串联所有的知识点: 写了一个C语言程序: #include main() {   puts("Hello World!\n"); } 目的是希望在屏幕中看到Hello World的字样…
转载自:click here 1.哈夫曼编码的起源: 哈夫曼编码是 1952 年由 David A. Huffman 提出的一种无损数据压缩的编码算法.哈夫曼编码先统计出每种字母在字符串里出现的频率,根据频率建立一棵路径带权的二叉树,也就是哈夫曼树,树上每个结点存储字母出现的频率,根结点到结点的路径即是字母的编码,频率高的字母使用较短的编码,频率低的字母使用较长的编码,使得编码后的字符串占用空间最小. 2.哈夫曼树构造的过程: 首先统计每个字母在字符串里出现的频率,我们把每个字母看成一个结点,结…
原文地址http://www.matrix67.com/blog/archives/105 这或许是众多OIer最大的误区之一.    你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题了”之类的话.你要知道,大多数人此时所说的NP问题其实都是指的NPC问题.他们没有搞清楚NP问题和NPC问题的概念.NP问题并不是那种“只有搜才行”的问题,NPC问题才是.好,行了,基本上这个误解已经被澄清了.下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题…
1.一般用C语言节约空间,要用C++库函数或STL时才用C++; cout.cin和printf.scanf最好不要混用. 2.有时候int型不够用,可以用long long或__int64型(两个下划线__). 值类型表示值介于 -2^63 ( -9,223,372,036,854,775,808) 到2^63-1(+9,223,372,036,854,775,807 )之间的整数. printf("%I64d",a); printf("%lld",a); 3.O…
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系. 对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信…
原帖及讨论:http://bbs.bccn.net/thread-82212-1-1.html 原文链接:http://www.bccn.net/Article/kfyy/cyy/jszl/200608/4238.html 在C语言的学习中,对内存管理这部分的知识掌握尤其重要!之前对C中的malloc()和free()两个函数的了解甚少,只知道大概该怎么用——就是malloc然后free就一切OK了.当然现在对这两个函数的体会也不见得多,不过对于本文章第三部分的内容倒是有了转折性的认识,所以 写…
Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代中期,为适应当时的曼哈顿计划需求而在美国Los Alamos实验室发展起来的,说白了就是美国为了造原子弹才逼出来的.Monte Carlo方法与一般的计算方法有很大的区别,一般计算方法对解决多维或因素复杂的问题非常困难,而Monte Carlo方法对解决这类问题却比较简单,因此Monte Carlo…
本文转载自: http://blog.csdn.net/innost/article/details/50377905 一.背景 这个选题很大,但并不是一开始就有这么高大上的追求.最初之时,只是源于对Xposed的好奇.Xposed几乎是定制ROM的神器软件技术架构或者说方法了.它到底是怎么实现呢?我本意就是想搞明白Xposed的实现原理,但随着代码研究的深入,我发现如果不了解虚拟机的实现,而仅简单停留在Xposed的调用流程之上,那真是对Xposed最大的不敬了.另外,歪果仁为什么能写出Xpo…
  [转]如何学好3D游戏引擎编程 Albert 本帖被 gamengines 从 游戏引擎(Game Engine) 此文为转载,但是值得一看. 此篇文章献给那些为了游戏编程不怕困难的热血青年,它的神秘要我永远不间断的去挑战自我,超越自我,这样才能攀登到游戏技术的最高峰         ——阿哲VS自己 QQ79134054多希望大家一起交流与沟通 这篇文章是我一年半前,找工作时候写的,那时是发到学校的BBS上.现在我工作了,想法和以前也有不同,但对游戏引擎编程理念还是基本差不多.在我没遇到U…
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有3个取值的离散值.这是一个多分类问题,二分类模型在这里不太适用. 多分类问题符合多项分布.有许多算法可用于解决多分类问题,像决策树.朴素贝叶斯等.这篇文章主要讲解多分类算法中的Softmax回归(Softmax Regression) 推导思路为:首先证明多项分布属于指数分布族…
一.写在前面的 都是自己积累形成的一些东西,可能带有明显的个人印记.不是专业内容,不是权威指南,只是展示一点自己的观点,借此希望能与各位优秀的同行交流看法,见解.以得到进步与提高. 二.我所知的一些过往的做法 关于如何处理网站的CSS,各个网站做法都不一样,这随着网站的性质及大小不同,公司前人留下的规范不同,以及CSS工程师的眼界不同而有所不同.由于我从业经历有限,所知甚浅,只能说些肤浅业余的内容,不准确之处欢迎指出. 就CSS文件而言,有的网站分为header.css, body.css, f…