大数据:Hive - ORC 文件存储格式】的更多相关文章

一.ORC File文件结构 ORC的全称是(Optimized Row Columnar),ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache Hive,用于降低Hadoop数据存储空间和加速Hive查询速度.和Parquet类似,它并不是一个单纯的列式存储格式,仍然是首先根据行组分割整个表,在每一个行组内进行按列存储.ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,并且文件中的数据尽可能的压缩以降低存储空间的消…
一.Parquet的组成 Parquet仅仅是一种存储格式,它是语言.平台无关的,并且不需要和任何一种数据处理框架绑定,目前能够和Parquet适配的组件包括下面这些,可以看出基本上通常使用的查询引擎和计算框架都已适配,并且可以很方便的将其它序列化工具生成的数据转换成Parquet格式. 查询引擎: Hive, Impala, Pig, Presto, Drill, Tajo, HAWQ, IBM Big SQL 计算框架: MapReduce, Spark, Cascading, Crunch…
一.Parquet的组成 Parquet仅仅是一种存储格式,它是语言.平台无关的,并且不需要和任何一种数据处理框架绑定,目前能够和Parquet适配的组件包括下面这些,可以看出基本上通常使用的查询引擎和计算框架都已适配,并且可以很方便的将其它序列化工具生成的数据转换成Parquet格式. 查询引擎: Hive, Impala, Pig, Presto, Drill, Tajo, HAWQ, IBM Big SQL 计算框架: MapReduce, Spark, Cascading, Crunch…
一.ORC File文件结构 ORC的全称是(Optimized Row Columnar),ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache Hive,用于降低Hadoop数据存储空间和加速Hive查询速度.和Parquet类似,它并不是一个单纯的列式存储格式,仍然是首先根据行组分割整个表,在每一个行组内进行按列存储.ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,并且文件中的数据尽可能的压缩以降低存储空间的消…
这篇文章主要介绍Hive的概念. 简介: Hive中文名叫数据仓库管理系统,之前我们操作MapReduce必须通过编写代码或者通过特殊命令来实现,有了Hive我们通过常用的SQL语句就能操作MapReduce集群了.是不是感觉很方便. 这也是方便不懂MapReduce原理,懂SQL语句的人用的. 有好几个公司都推出了自己的Hive,其中比较出名的是Apache Hive,CDH Hive,HDP Hive和MapR Hive,大家刚开始学习大部分都用的Apache Hive,但是公司中却很少使用…
1.orc列式存储概念 a)列式存储:orc并不是纯粹的列式存储,也是先基于行对数据表进行分组(行组),然后对行组进行列式存储. b)查询数据的时候不需要扫描全部数据(磁盘IO),只需查询指定列即可. c)orc对每一列提供了常规统计信息(min . max . sum等),加速查询.例如过滤条件f>10,如果当前分片的max小于10,则直接过滤掉这个分片. d)每一列的数据都是同构的,因此压缩效率更高. e)读写orc文件需要压缩.解压,需要消耗额外的cpu资源. 以上是orc文件格式的优劣点…
1.在讨论这个问题之前首先介绍一下什么是"大数据量sql文件". 导出sql文件.选择数据库-----右击选择"转储SQL文件"-----选择"结构和数据"  .保存文件db_mras.sql文件. 2.导入sql文件.在MYSQL中新建数据库db_mras.选择数据库-----右击选择"运行SQL文件"-----选择文件db_mras.sql,运行. 现在发现运行失败,提示错误"MySQL server has g…
Hive支持的存储数据的格式主要有:TEXTFILE .SEQUENCEFILE.ORC.PARQUET 一. 列式存储和行式存储 左边为逻辑表,右边第一个为行式存储,第二个为列式存储 1. 行式存储的特点 查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快. 2.列式存储的特点 因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量:每个字段的数据类型一定是…
Hive出现的背景 Hadoop提供了大数据的通用解决方案,比如存储提供了Hdfs,计算提供了MapReduce思想.但是想要写出MapReduce算法还是比较繁琐的,对于开发者来说,需要了解底层的hadoop api.如果不是开发者想要使用mapreduce就会很困难.... 另一方面,大部分的开发者都有使用SQL的经验.SQL成为开发者必备的技能... 那么可以不可以使用SQL来完成MapReduce的过程呢?-- 答案就是,Hive Hive能够解决的问题 Hive可以帮助开发者从现有的数…
SQL里面通常都会用Join来连接两个表,做复杂的关联查询.比如用户表和订单表,能通过join得到某个用户购买的产品:或者某个产品被购买的人群.... Hive也支持这样的操作,而且由于Hive底层运行在hadoop上,因此有很多地方可以进行优化.比如小表到大表的连接操作.小表进行缓存.大表进行避免缓存等等... 下面就来看看hive里面的连接操作吧!其实跟SQL还是差不多的... 数据准备:创建数据-->创建表-->导入数据 首先创建两个原始数据的文件,这两个文件分别有三列,第一列是id.第…