CornerNet】的更多相关文章

论文原址:https://arxiv.org/pdf/1808.01244.pdf github:https://github.com/princeton-vl/CornerNet 摘要 本文提出了目标检测算法的新的模型结构,利用单个卷积网络将框的左上角及右下角两个点组成一对关键点,进而不需要设计在单阶段检测中大量的anchor boxes,同时,引入了corner pooling用于提升角点定位效果. 介绍 单阶段检测通过密集的anchor box及后续的增强定位来获得好的检测效果,但使用an…
论文地址:https://arxiv.org/abs/1808.01244v1 论文代码:https://github.com/umich-vl/CornerNet 概述 CornerNet是一篇发表在ECCV 2018的目标检测论文.有别于主流目标检测算法基于anchor box的思想,CornerNet将关键点检测用于目标检测,通过检测目标区域的左上角和右下角这两个关键点来获取预测框.CornerNet创新性强,而且检测效果很好,在MS COCO数据集上的AP达到42.1%. CornerN…
1.cornerpooling的设计,个人觉得解释有些牵强. 这里的两个特征图如何解释,corner点为何是横向与纵向响应最强的点.如果仅仅当成一种奇特的池化方式,恰好也有着不错的效果,那倒是可以接受,论文中的解释实在难以接受. 看了CSDN AI之路的博客https://blog.csdn.net/u014380165/article/details/83032273,似乎有些理解了.特此摘抄下来. 如图Figure2所示.因此CornerNet是预测左上角和右下角两个角点,但是这两个角点在不…
[论文理解] CornerNet: Detecting Objects as Paired Keypoints 简介 首先这是一篇anchor free的文章,看了之后觉得方法挺好的,预测左上角和右下角,这样不需要去管anchor了,理论上也就w*h个点,这总比好几万甚至好几十万的anchor容易吧.文章灵感来源于Newell et al. (2017) on Associative Embedding in the context of multi-person pose estimation…
以下内容将介绍ECCV2018的一篇目标检测的文章<CornerNet: Detecting Objects as Paired Keypoints>.该文章讲述了一个老子就是不用anchor boxes的还能做目标检测的故事.对了据说代码公布了(反正我下载的时候里面是缺东西的). 这篇文章为什么让我喜欢看呢 1.你们用anchor boxes但我就不用2.有了一种新的pooling方式,corner pooling3.将很多人体姿态识别的方法和思想用到了目标检测4.我们小组汇报我得汇报这一篇…
CornerNet是一种anchor free的目标检测方法,不需要设置anchor,而是通过检测关键点(Keypoints),即目标的左上角(Top-Left Corners)和右下角(Bottom-Right Corners),再进行配对,来实现目标的检测. 网络的前半部分是一个卷积网络,后半部分是两个独立的分支,一个检测Top-Left Corners,另一个检测Bottom-Right Corners,两个分支分别生成一个热图,来预测每一个位置是Top-Left Corner或者Bott…
论文名称:CornerNet: Detecting Objects as Paired Keypoints 论文链接:https://arxiv.org/abs/1808.01244 代码链接:https://github.com/princeton-vl/CornerNet 简介 这篇文章是ECCV2018的一篇目标检测论文,该论文的创新之处在于使用Keypoints代替原来的anchor思想进行目标检测,提出检测目标左上点和右下点来确定一个边界框,提出一个新的池化方法:corner pool…
cornerNet来源灵感是基于多人姿态估计的从下往上思想,预测角的热图,根据嵌入式向量对角进行分组,其主干网络也来自于姿态估计的环面网络. cornerNet的总体框架结构图如下:  CornerNet 模型架构包含三部分:环面网络.右下角和左上角的热图.预测模块 环面网络同时包含多个从下往上(从高分辨率到低分辨率)和从上往下(从低分辨率到高分辨率)过程.这样设计的目的是在各个尺度下抓取信息. 嵌入式向量使相同目标的两个顶点(左上角和右下角)距离最短,偏移用于调整生成更加紧密的边界定位框. c…
CornerNethourglass network -> prediction module = corner pooling -> heatmaps + embedding + offsets corner polling,获取角点信息1.左上角的点和左边和上边的特征有关,因此角池化后会有这两个信息.2.公式就是当前点到最左线和最上线的距离的和.3.类似residual block形式,有skip connection heatmaps,预测角点的位置1.对负样本做欠采样以及focal l…
论文 CornerNet: Detecting Objects as Paired Keypoint…