题意:有一个水塘,要求把它用围栏围起来,每个费用为b.其中,(#)代表草,(.)代表洞,把一个草变成洞需要费用d, 把一个洞变成草需要费用f.请输出合法方案中的最小费用. 解法:(不好理解......('・ω・')っ) [思考]    1.围栏把草和洞分隔开了,也就是"割".但"割"只是把图中的点分成两部分,而这题的草和洞能有多个连通块.因此可以添加源.汇点,使得所有的草和洞接连起来了.    2.先考虑草和洞不能互相转换,那么只有建围栏这一种"割&quo…
题意:C公司有一些资源,每种只有1个,有A.B两个公司分别对其中一些资源进行分组竞标,每组竞标对一些资源出一个总价.问C公司的最大收益. 解法:最小割.将A公司的竞标与源点相连,B公司的与汇点相连,边容量为竞标价.而A.B公司的竞标中有资源冲突的竞标之间连一条边,容量为INF.这样的最大收益就是 总竞标出价-割去竞标的边的价格的最小值. 问题!!dinic函数那里,我竟然2种打法相差了近乎3秒,也就是dfs函数流了很多次...(゚Д゚≡゚Д゚) 1 #include<cstdio> 2 #in…
Pool construction You are working for the International Company for Pool Construction, a construction company whichspecializes in building swimming pools. A new client wants to build several new pool areas.A pool area is a rectangular grid of w × h s…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4261 题意: 输入一个h行w列的字符矩阵,草地用“#”表示,洞用“.”表示.你可以把草改成洞,每格花费为d,也可以把洞填上草,每格花费为f.最后还需要在草和洞之间修围栏,每条边的花费为b.整个矩阵第一行/列和最后一行/列必须都是草.求最小花费.2≤w,h≤50,1≤d, f, b≤…
输入一个字符矩阵,'.'代表洞,'#'代表草地.可以把草改成洞花费为d,或者把洞改成草花费为f,最后还要在草和洞之间修围栏花费为b. 首先把最外一圈的洞变成草,并累加花费. 增加一个源点和一个汇点,源点连接每个草地,汇点连接每个洞. 源点与最外一圈的草地连一条容量无穷大的边,与其他草地连一条容量为d的边.表示把这条弧切断,割的容量增加d,草就会变成洞. 每个洞与汇点连一条容量为f的边. 相邻两个格子之间连一条双向边. 用最大流算法求最小割在加上之前把边界上的洞变成草的费用,就是最小花费. 用最小…
Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complete an "impossible" mission ----- to make it slow for the army of City Colugu to reach the airport. City Colugu has n bus stations and m roads. Eac…
题意:有一个区域,有'.'的陆地,'D'的深海域,'E'的浅海域.其中浅海域可以填充为陆地.这里的陆地区域不联通,并且整个地图都处在海洋之中.问填充一定浅海域之后所有岛屿的最长的海岸线之和. 解法:最小割.从"分隔"陆地和海域可以想到"割"的概念,然后我们先不考虑浅海域,要深海域和陆地的对数尽量大,也就是相同的地理构造对数尽量小.      于是我们建立一个二分图,深海域和陆地都分列两侧,对于相邻的一个在左,一个在右,也就是"行+列"是奇数的放左…
如果我们先手拿完所有苹果再去考虑花费的话. S -> 摄像头 -> 苹果 -> T 就相当于找到一个最小割使得S和T分开. ans = sum - flow. 然后对于这一个模型, 我们可以不用网络流去解决. 我们从叶子出发,然后从下往上合并. 每次到一个节点的时候,我们先把摄像机所对应的影响去除. 然后把这个点的剩下流量传给父亲. 代码: #include<bits/stdc++.h> using namespace std; #define Fopen freopen(&…
题意: 给一个h*w的矩阵,每个格子中是'#'和'.'两个符号之一,分别代表草和洞.现在要将洞给围起来(将草和洞分离),每条边需花费b元(即将一个洞包起来需要4边,将2个连续的洞包起来需要6边,省了2条边).有个特殊能力,能将洞变成草,花费f.当然也能将草变成洞,花费d.围起洞来需要多少花费.矩阵四周最边边的格子都必须是草,即出现洞就必须转草. 转换:洞--->草--->洞      f   d   (元/格) 围洞: b元/边. 思路: 如果能够尽量让洞都靠在一起,那肯定是最小花费,因为少了…
比较明显的网络流最小割模型,对于这种模型我们需要先求获利的和,然后减去代价即可. 我们对于第i个人来说, 如果选他,会耗费A[I]的代价,那么(source,i,a[i])代表选他之后的代价,如果不选他,我们会产生Σw[i][j] 1<=j<=n的代价,也就是这么多的利益我们无法得到,然后对于两个人的互相影响,连边(i,j,2*w[i][j]),代表如果不选i,选j的话,本来i中选j的利益得不到,又要损失j对i的影响为w[i][j].所以共计损失2*w[i][j].之后求最小割=最大流就行了.…