论文地址:基于神经网络的实时语音增强的加权语音失真损失 论文代码:https://github.com/GuillaumeVW/NSNet 引用:Xia Y, Braun S, Reddy C K A, et al. Weighted speech distortion losses for neural-network-based real-time speech enhancement[C]//ICASSP 2020-2020 IEEE International Conference on…
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式:Zhu Y, Xu X, Ye Z. FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective funct…
论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolution-recurrent-1 引用:Hu Y,Liu Y,Lv S,et al. DCCRN: Deep complex convolution recurrent network for phase-aware speech enhancement[J]. arXiv preprint arXiv:…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   1. 引言: 本文尝试用 基于四个方向的 RNN 来替换掉 CNN中的 convolutional layer(即:卷积+Pooling 的组合).通过在前一层的 feature 上进行四个方向的扫描,完成特征学习的过程. The recurrent layer ensures that each…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测信号和残差信号应用独立的CNN网络.采用标量量化和哈夫曼编码将量化后的特征映射编码为二进制流.本文采用固定的32×32块来证明我们的想法,并与已知的H.264/AVC视频编码标准进行了性能比较,具有可比较的率失真性能.这里使用结构相似性(SSIM)来测量失真,因为它更接近感知响应. I. INTRO…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关系方面具有优势.本文将DNNs应用于浅水环境下的源定位.提出了两种方法,通过不同的神经网络结构来估计宽带源的范围和深度.第一阶段采用经典的两阶段方案,特征提取和DNN分析是两个独立的步骤;与模态信号空间相关联的特征向量被提取为输入特征.然后,利用时滞神经网络对长期特征表示进行建模,构建回归模型;第二…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器接收到的混合信号中的声学回声.传统的方法是使用自适应有限脉冲响应(FIR)滤波器来识别房间脉冲响应(RIR),因为房间脉冲响应对各种野外场景都不具有鲁棒性.在本文中,我们提出了一种基于深度神经网络的回归方法,从近端和远端混合信号中提取的特征直接估计近端目标信号的幅值谱.利用深度学习强大的建模和泛化能…
论文原址:https://pdfs.semanticscholar.org/eeb7/c037e6685923c76cafc0a14c5e4b00bcf475.pdf 摘要 本文研究了利用深度神经网络及逆行自动语音识别(ASR)的语音模型,其输入是直接输入窗口形语音波(WSW).本文首先证明了,网络要实现自动化需要具有于梅尔频谱相类似的特征,(梅尔频谱是啥?参考,https://blog.csdn.net/qq_28006327/article/details/59129110),本文研究了挖掘…
一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将物体分为几个大类,然后再将各个大类依次进行划分.识别,就像树一样不断地开枝散叶,最终叶节点得到的类别就是我们所要识别的类. 二.网络结构及学习策略¶ 1. 网络结构 Tree-CNN模型借鉴了层分类器,树卷积神经网络由节点构成,和数据结构中的树一样,每个节点都有自己的ID.父亲(Parent)及孩子…
1. 摘要 第一篇用深度学习做Reid的文章,提出的FPNN采用端到端的训练方式,解决行人再识别的不对齐,光照,姿态等问题. 建立了一个新的带benchmark的数据集CUHK03,表现性能良好. 2.介绍 作者在文章中提到,目前做Reid的大致框架如下 目前的工作主要集中在优化上述框架中的一项或者同时优化几项. 作者在本文的贡献总结: (1)解决不对齐.光照变换.几何变换.遮挡等问题 (2)使用一些有用的训练技巧:如dropout.数据增强.数据平衡.自助法等,使用端到端的训练 (3)建立发布…
论文通过实现RNN来完成了文本分类. 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment: # -*- coding: utf-8 -*- # @time : 2019/11/9 15:12 import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable dtype = torch.F…
论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network[C]//2021 IEEE International Conference on Signal Processing, Communica…
论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et al. WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement[J]. IEEE Signal Processing Letters, 2020, 27: 2149…
论文作者:Xiang Hao, Xiangdong Su, Radu Horaud, and Xiaofei Li 翻译作者:凌逆战 论文地址:Fullsubnet:实时单通道语音增强的全频带和子频带融合模型 代码:https://github.com/haoxiangsnr/FullSubNet 摘要 本文提出了一种用于单通道实时语音增强的全频带和子频带融合模型FullSubNet.全频带和子频带是指分别输入全频带和子频带噪声频谱特征,输出全频带和子频带语音目标的模型.子带模型独立处理每个频率…
论文地址:一种低复杂度实时增强全频带语音的感知激励方法 论文代码 引用格式:A Perceptually Motivated Approach for Low-complexity, Real-time Enhancement of Fullband Speech 摘要 近几年来,基于深度学习的语音增强方法大大超过了传统的基于谱减法和谱估计的语音增强方法.许多新技术直接在短时傅立叶变换(STFT)域中操作,导致了很高的计算复杂度.在这项工作中,我们提出了PercepNet,这是一种高效的方法,它…
论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了一种利用卷积神经网络实现实时残余回声抑制(RAES)的方法.在多任务学习的背景下,采用双语音检测器作为辅助任务来提高性能.该训练准则基于一种新的损失函数,我们称之为抑制损失,以平衡残余回声的抑制和近端信号的失真.实验结果表明,该方法能有效抑制不同情况下的残余回声. 关键字:残余回声抑制,卷积神经网络…
论文地址:基于分层递归神经网络的嵌入式设备轻量化在线降噪 引用格式:Schröter H, Rosenkranz T, Zobel P, et al. Lightweight Online Noise Reduction on Embedded Devices using Hierarchical Recurrent Neural Networks[J]. arXiv preprint arXiv:2006.13067, 2020. 摘要 基于深度学习的降噪算法已经证明了它们的成功,尤其是对非平…
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3367/attachments/779/817/Thu-1-10-6.pdf 利用循环神经网络抑制非线性残差回声 摘要 免提通信设备的声学前端会对扬声器和麦克风之间的线性回声路径带来各种失真.虽然放大器可能会引入一个无记忆的非线性,但从扬声器通过设备外壳传递到麦克风的机械振动会引起记忆的非线性,这很难弥补.这些失真极大地限制了线性AEC算法的性能.虽然针对个别用例…
论文地址:https://arxiv.53yu.com/abs/2106.07577 基于 F-T-LSTM 复杂网络的联合声学回声消除和语音增强 摘要 随着对音频通信和在线会议的需求日益增加,在包括噪声.混响和非线性失真在内的复杂声学场景下,确保声学回声消除(AEC)的鲁棒性已成为首要问题.尽管已经有一些传统的方法考虑了非线性失真,但它们对于回声抑制仍然效率低下,并且在存在噪声时性能会有所衰减.在本文中,我们提出了一种使用复杂神经网络的实时 AEC 方法,以更好地建模重要的相位信息和频率时间…
论文地址:基于动态注意的递归网络单耳语音增强 论文代码:https://github.com/Andong-Li-speech/DARCN 引用格式:Li, A., Zheng, C., Fan, C., Peng, R., Li, X. (2020) A Recursive Network with Dynamic Attention for Monaural Speech Enhancement. Proc. Interspeech 2020, 2422-2426 摘要 听觉动态注意理论已经…
论文地址:https://arxiv.53yu.com/abs/2104.04325 联合在线多通道声学回声消除.语音去混响和声源分离 摘要: 本文提出了一种联合声源分离算法,可同时减少声学回声.混响和干扰源.通过最大化相对于其他源的独立性,将目标语音从混合中分离出来.结果表明,分离过程可以分解为级联的子过程,分别与声学回声消除.语音去混响和源分离相关,所有这些都使用基于辅助函数的独立分量/矢量分析技术及其求解顺序来求解是可交换的.级联解决方案不仅导致较低的计算复杂度,而且比普通联合算法具有更好…
论文地址:延迟约束的语音增强基音估计 引用格式:Schröter H, Rosenkranz T, Escalante-B A N, et al. LACOPE: Latency-Constrained Pitch Estimation for Speech Enhancement[C]//Interspeech. 2021: 656-660. 摘要 基频($f_0$)估计,又称基音跟踪,是语音和信号处理领域长期以来的研究课题.然而,许多基音估计算法在噪声条件下失败,或者由于其帧大小或Viter…
论文地址:ICASSP 2021声学回声消除挑战:数据集和测试框架 代码地址:https://github.com/microsoft/DNS-Challenge 主页:https://aec-challenge.azurewebsites.net/ 摘要 ICASSP 2021年声学回声消除挑战赛旨在促进声学回声消除(AEC)领域的研究,该领域是语音增强的重要组成部分,也是音频通信和会议系统中的首要问题.许多最近的AEC研究报告了在训练和测试样本(来自相同基础分布的合成数据集)上的良好性能.然…
论文地址:https://ieeexplore.ieee.org/abstract/document/9413510 基于双信号变换LSTM网络的回声消除 摘要 本文将双信号变换LSTM网络(DTLN)应用于实时声学回声消除(AEC)任务中.DTLN结合了短时傅里叶变换和堆叠网络方法中的学习特征表示,这使得在时频和时域(也包括相位信息)中能够进行鲁棒的信息处理.该模型仅在真实和合成回声场景下训练60小时.训练设置包括多语言语音.数据增强.附加噪音和混响,以创建一个可以很好地适用于各种现实环境的模…
论文地址:深度噪声抑制模型的性能优化 引用格式:Chee J, Braun S, Gopal V, et al. Performance optimizations on deep noise suppression models[J]. arXiv preprint arXiv:2110.0437…
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Network In Network) [中文译名] 网络中的网络 [论文链接]https://arxiv.org/abs/1312.4400 [补充] 1)NIN结构的caffe实现: 因为我们可以把全连接层当作为特殊的卷积层,所以呢, NIN在caffe中是非常 容易实现的: https://githu…
论文地址:两阶段深度网络的解耦幅度和相位优化 论文代码: 引用格式:Li A, Liu W, Luo X, et al. ICASSP 2021 deep noise suppression challenge: Decoupling magnitude and phase optimization with a two-stage deep network[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Spee…