原文链接http://www.cnblogs.com/zhouzhendong/p/9026184.html 题目传送门 - Codeforces 802I 题意 求一个串中,所有本质不同子串的出现次数的平方和. $|s|\leq 10^5$ 题解 首先,这一题用 SAM 做就是模板题,比较简单. 但是,本着练一练 SA 的心态,我开始了 SA+单调栈 的苦海. 真毒瘤. 这里讲一讲 SA 的做法,也是经典的做法. SA 闭着眼睛先写了再说. 首先,我们考虑出现次数大于 $1$ 次的子串. 考虑…
原文链接https://www.cnblogs.com/zhouzhendong/p/9256033.html 题目传送门 - CF873F 题意 给定长度为 $n$ 的字符串 $s$,以及给定这个字符串每一个位置是否 “禁止结尾” 的信息. 一个字符串 $a$ 的价值为 $|a|\times f(a)$ . 其中 $f(a)$为 $a$ 在 $s$ 中的匹配次数(如果匹配的结尾为禁止结尾点,那么不算匹配成功) 问在所有的字符串 $a$ 中,$\max(|a|\times f(a)$ 的值. $…
题意 给出一个字符串\(s\)和\(q\)个询问. 每次询问给出两个长度分别为\(k,l\)的序列\(a\)和序列\(b\). 求\(\sum_{i=1}^{k}\sum_{j=1}^{l}lcp(s[a_i-n],s[b_j-n])\) Solution \(SA\)练习题. 求出\(height\)数组后,每次询问相当于询问\(l*k\)个区间\(min\)之和. 岂不单调栈? 对没错,这个题解就是提供给你代码对拍的 #include<bits/stdc++.h> #define For(…
洛谷 Codeforces 我竟然能在有生之年踩标算. 思路 首先考虑暴力:枚举左右端点直接计算. 考虑记录\(sum_x=\sum_{i=1}^x c_i\),设选\([l,r]\)时那个奇怪东西的平方为\(f(l,r)\),使劲推式子: \[ ans_{l,r}=(r-l+1)\times a-sum_r+sum_{l-1}-f(l,r)\\ ans_{l,r}+l\times a-a-sum_{l-1}=r\times a-sum_r-f(l,r)\\ ans_{l,r}+l\times…
他要求的就是lcp(x,y)>=i的(x,y)的个数和a[x]*a[y]的最大值 做一下后缀和,就只要求lcp=i的了 既然lcp(x,y)=min(h[rank[x]+1],..,[h[rank[y]]]) 那么我们求出来对于每一个h,以它作为最小值的区间的左右端点就可以了,这个可以用单调栈,具体做法见Neat Tree(?哪里具体了) 假设L是i左面第一个h小于等于它的,R是i右面第一个小于它的(一定要一边有=一边没有,很关键) 那就相当于lcp(x,y)=h[i] ,rank[x]∈[L,…
题面 戳这里 题解 考虑把要求的那个东西拆开算,前面一个东西像想怎么算怎么算,后面那个东西在建出\(height\)数组后相当于是求所有区间\(min\)的和*2,单调栈维护一波即可. #include<bits/stdc++.h> #define For(i,x,y) for (int i=(x);i<=(y);i++) #define Dow(i,x,y) for (int i=(x);i>=(y);i--) #define cross(i,k) for (int i=firs…
把两个串中间加一个未出现字符接起来,然后求SA 然后把贡献统计分为两部分,在排序后的后缀里,属于串2的后缀和排在他前面属于串1的后缀的贡献和属于串1的后缀和排在他前面属于串2的后缀的贡献 两部分分别作,都用单调栈维护一段里的height最小值(因为lcp是排序后两后缀中间height最小值),然后根据每次入栈种类来给答案算贡献 #include<iostream> #include<cstdio> #include<cstring> using namespace st…
题目链接:http://codeforces.com/contest/817/problem/D 题意:给你n个数a[1..n]定义连续子段imbalance值为最大值和最小值的差,要你求这个数组的imbalance总值 题解:首先要知道imbalance的值可以有所有区间的Max的和减去所有区间Min的和.那么就是怎么求所有区间的Max和与Min和.要知道如果是以a[i]为最小值那么最小值为a[i]的区间数为a[i]左边第一个小于a[i]的位置l,a[i]右边第一个大于等于a[i]的位置r,a…
补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); 那么我们考虑剩下的部分应该怎么求解! 首先这里有一个性质.对于任意两个后缀\(i,j\),他们的\(lcp\)长度是他们对应的\(rank\)之间的\(height\)的\(min\) (左开右闭) 或者这样说 \(lcp(i,j) = min(height[rank[i]+1],height[rank[…
D. Imbalanced Array time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output You are given an array a consisting of n elements. The imbalance value of some subsegment of this array is the differenc…