Hadoop记录-hive merge小文件】的更多相关文章

1. Map输入合并小文件对应参数:set mapred.max.split.size=256000000;  #每个Map最大输入大小set mapred.min.split.size.per.node=100000000; #一个节点上split的至少的大小 set mapred.min.split.size.per.rack=100000000; #一个交换机下split的至少的大小set hive.input.format=org.apache.hadoop.hive.ql.io.Com…
一.小文件是如何产生的 1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增. 2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的). 3.数据源本身就包含大量的小文件. 二.小文件问题的影响 1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能. 2.在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存.这样NameNode内存容量严重制约了集群的扩…
分区表 set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict;create table test.test28_partition(id string, name string)PARTITIONED BY (inc_day string)STORED AS PARQUETlocation 'hdfs://xxx/user/hive/warehouse/test/test27_pa…
磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以有了block(块)的概念,它是一个块一个块的读取的,block才是文件存取的最小单位. 文件系统中1个块是由连续的8个扇区组成. HDFS: 默认文件大小64M(或者是128M) hive小文件问题解决 问题描述 HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中…
1.hive.merge.mapfiles,True时会合并map输出.2.hive.merge.mapredfiles,True时会合并reduce输出.3.hive.merge.size.per.task,合并操作后的单个文件大小.4.hive.merge.size.smallfiles.avgsize,当输出文件平均大小小于设定值时,启动合并操作.这一设定只有当hive.merge.mapfiles或hive.merge.mapredfiles设定为true时,才会对相应的操作有效.5.m…
使用 使用使用 使用 HDFS 保存大量小文件的缺点:1.Hadoop NameNode 在内存中保存所有文件的“元信息”数据.据统计,每一个文件需要消耗 NameNode600 字节内存.如果需要保存大量的小文件会对NameNode 造成极大的压力.2.如果采用 Hadoop MapReduce 进行小文件的处理,那么 Mapper 的个数就会跟小文件的个数成线性相关(备注:FileInputFormat 默认只对大于 HDFS Block Size的文件进行划分).如果小文件特别多,MapR…
上一例是直接用SequenceFile的createWriter来实现,本例采用mapreduce的方式. 1.把小文件整体读入需要自定义InputFormat格式,自定义InputFormat格式需要先定义RecordReader读取方式,为了整体读入,RecordReader使用一次性读入所有字节. 1.1 继承RecordReader泛型,重写这个类. import org.apache.hadoop.conf.Configuration; import org.apache.hadoop…
项目背景 在实际项目中,输入数据往往是由许多小文件组成,这里的小文件是指小于HDFS系统Block大小的文件(默认128M),早期的版本所定义的小文件是64M,这里的hadoop-2.2.0所定义的小文件是128M.然而每一个存储在HDFS中的文件.目录和块都映射为一个对象,存储在NameNode服务器内存中,通常占用150个字节. 如果有1千万个文件,就需要消耗大约3G的内存空间.如果是10亿个文件呢,简直不可想象.所以在项目开始前, 我们要先了解一下 hadoop 处理小文件的各种方案,然后…
1. 什么是Hadoop archives Hadoop archives是特殊的档案格式.一个Hadoop archive对应一个文件系统目录. Hadoop archive的扩展名是.har.Hadoop archive包含元数据(形式是_index和_masterindx)和数据(part-)文件._index文件包含了档案中的文件的文件名和位置信息. 2. 创建archives 创建archives是一个Map/Reduce job.你应该在map reduce集群上运行这个命令. 用法…
set mapred.job.queue.name=pms;   //设置队列set hive.exec.reducers.max=8;  //设置最大的reducersset mapred.reduce.tasks=8;   //设置最大的redue tasksset hive.exec.parallel=true;    //开启任务并行执行set hive.exec.parallel.thread.number=8;  // 同一个sql允许并行任务的最大线程数…