洛谷——P2388 阶乘之乘】的更多相关文章

P2388 阶乘之乘 题目背景 不告诉你…… 题目描述 求出1!*2!*3!*4!*……*n!的末尾有几个零 输入输出格式 输入格式: n(n<=10^8) 输出格式: 有几个零 输入输出样例 输入样例#1: 复制 10 输出样例#1: 复制 7 乘数后面的零的个数只与这个数质因数分解以后2的个数和5的个数有关,0的个数等于min(sum2,sum5) #include<cstdio> #include<cstring> #include<iostream> #i…
本蒟蒻又来发题解了QwQ; 看到这个题目,本蒟蒻第一眼就想写打个暴力: 嗯,坏习惯: 但是,动动脑子想一想就知道,普通的的暴力是过不了的: 但是,身为蒟蒻的我,也想不出什么高级的数学方法来优化: 好,回到正题 题目是要求我们求出这个累乘末尾的'0' '0'是个特别特殊的数字,因为是累乘,那么一个'0'肯定是由一个'2'和一个'5'相乘得来的: 而且'0'的个数肯定是'2'和'5'之间数目较少的那一个的个数: 而我们又是求它的阶乘的累乘, 所以'5'的个数一定要小于'2'的个数 那么'0'的个数就…
题目背景 不告诉你-- 题目描述 求出1!*2!*3!*4!*--*n!的末尾有几个零 输入输出格式 输入格式: n(n<=10^8) 输出格式: 有几个零 输入输出样例 输入样例#1: 复制 10 输出样例#1: 复制 7 首先末尾有0肯定就是乘10,10可以分解为2和5,显然2的数目多于5,于是就是统计5的数目 然后可以转化一下, 对于 11 21 2 31 2 3 41 2 3 4 51 2 3 4 5 6--1 2 3 4 5 6 -- x 我们来除一下5,发现能被5整除的项变成了: 1…
分析 求因数5的个数 AC代码 #include<iostream> using namespace std; int main() { long long n,t,ans=0,s=0; cin>>n; for(int i=1;i<=n;i++) { t=i; while(t%5==0) s++,t/=5; ans+=s; } cout<<ans<<endl; return 0; }…
目录 简要题意 题解 主要思路 一个 \(\omega(n)\) 的算法 一个 \(O(\log n)\) 的算法 一个算法 代码 算法 \(1\)(\(\omega(n)\)) 算法 \(2\) 算法 \(3\) 简要题意 求 \(1!\times 2!\times \cdots\times n!\) 的末尾有几个 \(0\) . \(n\le 10^8\) 题解 主要思路 首先,一个数末尾有几个零等价于它有多少个因子 \(10\) . 即这个数有多少个因子 \(2\) 和 \(5\),又因为…
想看原题请点击这里:传送门 看一下原题: 题目描述 用高精度计算出S=!+!+!+…+n! (n≤) 其中“!”表示阶乘,例如:!=****××××. 输入格式 一个正整数N. 输出格式 一个正整数S,表示计算结果. 输入输出样例 输入 输出 如果这道题不需要用高精度的话那就变得很简单了,但由于我们看到了洛谷贴上了“高精度”的标签但由于这道题目是求阶乘和所以越往后n的阶乘就会越大. 又因为n!=n*(n-1!,所以有转移方程n!=n*(n-1)!避免重复运算(ROS只是唠叨一句防止有些人不知道忘…
题目背景 N的阶乘写作N!,表示小于等于N的所有正整数的乘积. 题目描述 阶乘会变大得很快,如13!就必须用32位整数类型来存储,到了70!即使用浮点数也存不下了. 你的任务是找到阶乘最前面的非零位.举个例子: 5!=1*2*3*4*5=120,所以5!的最靠前的非零位是1. 7!=1*2*3*4*5*6*7=5040,所以最靠前的非零位是5. 输入输出格式 输入格式: 共一行,一个不大于4,220的正整数N 输出格式: 共一行,输出N!最靠后的非零位. 输入输出样例 输入样例#1: 7 输出样…
题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001,600 12的阶乘最右边的非零位为6. 写一个程序,计算N(1<=N<=50,000,000)阶乘的最右边的非零位的值. 注意:10,000,000!有2499999个零. 输入输出格式 输入格式: 仅一行包含一个正整数N. 输出格式: 单独一行包含一个整数表示最右边的非零位的值. 输入输出样例…
题目背景 N的阶乘写作N!,表示小于等于N的所有正整数的乘积. 题目描述 阶乘会变大得很快,如13!就必须用32位整数类型来存储,到了70!即使用浮点数也存不下了. 你的任务是找到阶乘最前面的非零位.举个例子: 5!=1*2*3*4*5=120,所以5!的最靠前的非零位是1. 7!=1*2*3*4*5*6*7=5040,所以最靠前的非零位是5. 输入输出格式 输入格式: 共一行,一个不大于4,220的正整数N 输出格式: 共一行,输出N!最靠后的非零位. 输入输出样例 输入样例#1: 7 输出样…
题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001,600 12的阶乘最右边的非零位为6. 写一个程序,计算N(1<=N<=50,000,000)阶乘的最右边的非零位的值. 注意:10,000,000!有2499999个零. 输入输出格式 输入格式: 仅一行包含一个正整数N. 输出格式: 单独一行包含一个整数表示最右边的非零位的值. 输入输出样例…
题目描述 用高精度计算出S=1!+2!+3!+…+n!(n≤50) 其中“!”表示阶乘,例如:5!=5*4*3*2*1. 输入输出格式 输入格式: 一个正整数N. 输出格式: 一个正整数S,表示计算结果. 输入输出样例 输入样例#1: 3 输出样例#1: 9 代码 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ],a…
P1134 阶乘问题 题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001,600 12的阶乘最右边的非零位为6. 写一个程序,计算N(1<=N<=50,000,000)阶乘的最右边的非零位的值. 注意:10,000,000!有2499999个零. 输入输出格式 输入格式: 仅一行包含一个正整数N. 输出格式: 单独一行包含一个整数表示最右边的非零位…
P1009 阶乘之和 题目描述 用高精度计算出S=1!+2!+3!+…+n!(n≤50) 其中“!”表示阶乘,例如:5!=5*4*3*2*1. 输入输出格式 输入格式: 一个正整数N. 输出格式: 一个正整数S,表示计算结果. 输入输出样例 输入样例#1: 复制 3 输出样例#1: 复制 9 高精加+高精乘 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #d…
P1591 阶乘数码 题目描述 求n!中某个数码出现的次数. 输入输出格式 输入格式: 第一行为t(≤10),表示数据组数.接下来t行,每行一个正整数n(≤1000)和数码a. 输出格式: 对于每组数据,输出一个整数,表示n!中a出现的次数. 输入输出样例 输入样例#1: 复制 2 5 2 7 0 输出样例#1: 复制 1 2 高精乘 #include<cstdio> #include<cstring> #include<iostream> #include<al…
https://www.luogu.org/problemnew/show/P1134 题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001,600 12的阶乘最右边的非零位为6. 写一个程序,计算N(1<=N<=50,000,000)阶乘的最右边的非零位的值. 注意:10,000,000!有2499999个零. 输入输出格式 输入格式: 仅一行包含…
题目描述 用高精度计算出S=1!+2!+3!+…+n!(n≤50) 其中“!”表示阶乘,例如:5!=5*4*3*2*1. 输入输出格式 输入格式: 一个正整数N. 输出格式: 一个正整数S,表示计算结果. 输入输出样例 输入样例#1: 3 输出样例#1: 9高精度 屠龙宝刀 点击就送 #include <iostream> using namespace std; ],l=,n,i,j,s[]; void xj() { ;i<=l;++i) { str[i]+=s[i]; ) { str…
P1591 阶乘数码 题目描述 求n!中某个数码出现的次数. 输入输出格式 输入格式: 第一行为t(≤10),表示数据组数.接下来t行,每行一个正整数n(≤1000)和数码a. 输出格式: 对于每组数据,输出一个整数,表示n!中a出现的次数. 输入输出样例 输入样例#1: 复制 2 5 2 7 0 输出样例#1: 复制 1 2思路:高精度板子 #include<cstdio> #include<cstring> #include<iostream> #include&l…
import java.util.Scanner; public class 阶乘之和 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int [] sum = new int [101]; int [] num = new int [101]; num[1]=1; for (int i = 1; i <=n; i++) { int a=0,…
[传送门] #include<bits/stdc++.h> using namespace std; int main() { ; cin>>a; ;i<=a;i++) { summ=summ*i; ==) { summ/=; } summ=summ%; } cout<<summ%; }…
一开始只保留最后一位,交上去29 #include<cstdio> #include<cmath> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) #define _for(i, a, b) for(int i = (a); i <= (b); i++) using namespace std; int main() { int n, ans = 1; scanf…
题面 很裸的边取模边乘.注意因为进位的原因模数应该比较大: 另外,这道题是一道标准的分块打表例题(那样的话数据就可以更大了),可以用来练习分块打表: #include<bits/stdc++.h> using namespace std; int n; ; int main() { scanf("%d",&n); ;i<=n;i++) { zc%=; zc=zc*i; )==) zc/=; } cout<<(zc%); }…
题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服,立刻就要算这个数在k进制表示下末尾0的个数. 但是SOL菌太菜了于是请你帮忙. 说明 对于20%的数据,n <= 1000000, k = 10 对于另外20%的数据,n <= 20, k <= 36 对于100%的数据,n <= 10^12,k <= 10^12 这道题的思路还是挺显然的,0的个数即n!和k共同质因数的数量之比最小的那个.K的质因…
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个整数T(T\le 10T≤10),表示数据组数 第二行开始共T行,每行三个数n m p,意义如上 [输出格式] 共T行,每行一个整数表示答案. [输入样例] 21 2 52 1 5 [输出样例] 33 >>>>分析 emmmm模板题还是不用分析了吧 卢卡斯定理解决的就是组合数C(n,m…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…
题目传送门:洛谷 P4128. 计数好题,原来是 13 年前就出现了经典套路啊.这题在当年应该很难吧. 题意简述: \(n\) 个点的完全图,点没有颜色,边有 \(m\) 种颜色,问本质不同的图的数量对质数 \(p>n\) 取模. 本质不同指的是在点的 \(n!\) 种不同置换下不同. 题解: 首先有 \(\mathrm{P\acute{o}lya}\) 定理:一类元素在一个置换群的作用下本质不同的元素(不同等价类)个数等于 \(\frac{1}{|G|}\sum_{g\in G}M(g)\).…
洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, 果树会随机选择一个当前树中没有长出过结点 的分支, 然后在这个分支上长出一个新结点, 新结点与分支所属的结点之间连接上一条边. 小 C 定义一棵果树的不便度为树上两两结点之间的距离之和, 两个结点之间…
点此看题面 大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树. \(prufer\)序列 一道弱化版的题目:[洛谷2290][HNOI2004] 树的计数. 这同样也是一道利用\(prufer\)序列求解的题. 还是考虑到由\(prufer\)序列得到的结论:对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况. 但这次就不能直接套公式了. 推式子 考虑对于已知度数的点,设其…
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜色用前8个正整数来表示.可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列.对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示.这是基本状态. 这里提供三种基本操作,分别用大写字母"A","…
洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_{n}+D_{n-m}\] 再看看数据范围:n最大\(10^6\),错排好办,直接递推: \[D[i]=(i-1)*(D[i-1]+D[i-2])\] D[0]=1,D[1]=0. 而组合数部分有点麻烦.\[C[i][j]=C[i-1][j]+C[i-1][j-1]\] 用上面这个公式可以做1000…
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数.//codevs这里有坑,R是合数 输入输出格式 输入格式: 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数N,M,…