cf732f】的更多相关文章

思路:先缩点,再以最大连同分量为根dfs,代码太垃圾不想贴…
题意 在一张有向图中,设 ri 为从点 i 出发能够到达的点的数量. 定义有向图的“改良值”为 ri 的最小值. 现给出一张无向图,要求给每条边定一个方向,使产生的有向图“改良值”最大. 输出 最大改良值和边的方向. n,m≤400000 题解 对于无向图的每个“边双连通分量”,一定存在一种定向方法,使其改良值等于其大小 把无向图缩点后,以最大的 e-DCC 为零出度点(终点) BFS 定向 每个 e-DCC 内部 DFS 定向 #include<iostream> #include<c…
题意:给无向图每一条边定向,使得每个点可达点数$R_i$最小值尽可能大,求方案. 条件反射想到二分答案,然后看怎么检验,发现要让所有点$R_i$大于等于某一个值,首先我们关注某些特殊的子图:如果有环的话,显然可以让他定向后各点互达,并且这样的定向并不会影响其他点的$R$.进一步看,如果一个子图,定向后成了一个SCC,显然每个点都可以到达所有子图内的点,显然是很好的.而SCC对应在无向图中,是一个边双,并且因为边双可以看成是一堆环互相套和交组成的连通图,相当于每个环都定一下向,所以显然直接dfs,…