qml+opencv(二),实现人脸检测】的更多相关文章

本篇介绍图像处理与模式识别中最热门的一个领域——人脸检测(人脸识别).人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影.甚至很多高校学生的毕业设计都会涉及到人脸检测.当然人脸检测的巨大实用价值也让很多公司纷纷关注,很多公司都拥有这方面的专利或是开发商业产品出售. 在OpenCV中,人脸检测也是其热门应用之一.在OpenCV的特征检测专题就详细介绍了人脸检测的原理——通过Haar特征来识别是否为人脸.Haar特征检测原理与Haar特征分类器的训练放到下一篇<[OpenCV…
前段时间看的OpenCV,其实有很多的例子程序,参考代码值得我们学习,对图像特征提取三大法宝:HOG特征,LBP特征,Haar特征有一定了解后. 对本文中的例子程序刚开始没有调通,今晚上调通了,试了试效果还可以,还需要深入理解.值得大家动手试试,还是很有成就感的,虽然是现成的例子....... 环境:OpenCV3.1+VS2013+WIN10 复制代码/*! * \file Capture.cpp * * \author ranjiewen * \date 十一月 2016 * * http:…
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了. 如下: 读取图…
1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理,使照片得到自动美化.完整代码见于GitHub. 2. 重要步骤 人脸检测 OpenCV样例库中自带的训练结果采用的是Viola-Jones框架,选择了一种类Haar矩形特征,采用Ada-Boost这种自适应上升的算法来选择用于分类的特征并进行分类,最后使用弱分类器级联的架构来实现快速运算.人脸检测使…
1 概述 完成 Android 相机预览功能以后,在此基础上我使用 dlib 与 opencv 库做了一个关于人脸检测的 demo.该 demo 在相机预览过程中对人脸进行实时检测,并将检测到的人脸用矩形框描绘出来.具体实现原理如下: 采用双层 View,底层的 TextureView 用于预览,程序从 TextureView 中获取预览帧数据,然后调用 dlib 库对帧数据进行处理,最后将检测结果绘制在顶层的 SurfaceView 中. 2 项目配置 由于项目中用到了 dlib 与 open…
简介   OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.  OpenCV的官方网址为:https://opencv.org/, 其Github网址为:https://github.com/opencv .  本文将会介绍OpenCV在…
导读 OpenCV 是一个开源的跨平台计算机视觉库, 采C++语言编写,实现了图像处理和计算机视觉方面的很多通用算法,同时也提供对Python,Java,Android等的支持,这里利用Android下的接口,实现一个简单的人脸检测: 首先需要说清楚这里是人脸检测,不是人脸识别,网上很多资料说实现人脸识别,最后一看明明是人脸检测. 人脸检测:是找出人脸,并标记出人脸. 人脸识别:检测出人脸,并能够通过学习,给出人脸信息,比如,给定一个人脸A,通过学习,在之后的众多检测中能够找出人脸A,这才是人脸…
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而…
http://blog.csdn.net/zhx6044/article/details/45048765…
import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml") eye_cascade = cv2.CascadeClassifier("data/haarcascade_eye.xml") smile_cascade = cv2.CascadeClassif…
全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article/details/47057081 本篇文章主要介绍了如何使用OpenCV实现人脸检测.本文不具体讲解人脸检测的原理,直接使用OpenCV实现. OpenCV版本:2.4.10:VS开发版本:VS2012. 一.OpenCV人脸检测 要实现人脸识别功能,首先要进行人脸检测,判断出图片中人脸的位置,才…
本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸),而其他的分类器可识别小的区域(如鼻子.眼睛和嘴). 1 Haar 级联的概念 图像会因灯光.视角.视距.摄像头抖动以及数字噪声的变化而使得细节变得不稳定.所以提取图像的细节对产生稳定分类结果和跟踪结果很有作用.这些提取的结果被称为特征. 专业的表述为:从图像数据中提取特征.虽然任意像素都可能影响多…
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像…
这是篇是利用 OpenCV 进行人脸识别的技术讲解.阅读本文之前,这是注意事项: 建议先读一遍本文再跑代码——你需要理解这些代码是干什么的.成功跑一遍不是目的,能够举一反三.在新任务上找出 bug 才是. 请确保用的是 OpenCV v2 你需要一个网络摄像头 OpenCV OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征…
很早之前就做过一些关于人脸检测和目标检测的课题,一直都没有好好总结出来,趁着这个机会,写个总结,希望所写的内容能给研究同类问题的博友一些见解和启发!!博客里面涉及的公式太繁琐了,直接截图了. 转载请注明出处:http://www.cnblogs.com/adong7639/p/4194307.html 一 人脸检测之问题概述 人脸检测是CV领域的一个经典课题,很多学者对人脸检测做了深入的研究,但真正的分水岭却是在2001年viola等大神发表的那篇经典之作Rapid Object Detecti…
[1]基础学习笔记之opencv(1):opencv中facedetect例子浅析 http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html[2]OpenCV学习笔记(二十七)——基于级联分类器的目标检测objdect http://blog.csdn.net/yang_xian521/article/details/6973667[3]Haar+Adaboost实现人头检测 http://blackhuman.blog…
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库. 点击查看往期: <图片人脸检测——OpenCV版(二)> <视频人脸检测——OpenCV版(三)> dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的人脸识别模型,可以检测脸部68甚至更多的特征点 效果展示 人脸的68个特征点 安装dlib 下载地址:https://pypi.org/simple/dlib/ 选择适合你的版本,本…
往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧. 视…
一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10 , 10) #显示图像的最大范围,使用plt.rcParams['savefig.dpi']得到缺省的dpi值为100,则最大的图片范围为1000*10…
在opencv中,人脸检测用的是harr或LBP特征,分类算法用的是adaboost算法.这种算法需要提前训练大量的图片,非常耗时,因此opencv已经训练好了,把训练结果存放在一些xml文件里面.在opencv3.0版本中,训练好的文件放在 \build\etc\文件夹下,有两个文件夹haarcascades和lbpcascades,前者存放的是harr特征训练出来的文件,后者存放的是lbp特征训练出来的文件. 人脸检测主要用到的是CascadeClassifier这个类,以及该类下的dete…
笔者今年做了一个和人脸有关的android产品,主要是获取摄像头返回的预览数据流,判断该数据流是否包含了人脸,有人脸时显示摄像头预览框,无人脸时摄像头预览框隐藏,看上去这个功能并不复杂,其实在开发过程中,遇到的问题也不多,全部都处理了,在正式推出前,这个产品在公司内部也测试了几个月,也没发现bug,但最近实施人员,在客户公司做实施时,反馈回来各种问题,这些问题有部分是程序bug,也有一部分是和硬件有关,因为测试环境有限,笔者无法对各种型号,各个厂家的硬件进行测试,这篇文章主要是记录,摄像头给我们…
检测结果如下 这个示例程序需要使用较大的内存,请保证内存足够.本程序运行速度比较慢,远不及OpenCV中的人脸检测. 注释中提到的几个文件下载地址如下 http://dlib.net/face_detection_ex.cpp.html http://dlib.net/dnn_introduction_ex.cpp.html http://dlib.net/dnn_introduction2_ex.cpp.html http://dlib.net/dnn_mmod_ex.cpp.html /*…
      在OpenCV中,自带着Harr分类器人脸特征训练的文件,利用这些文件,我们可以很方面的进行人脸,眼睛,鼻子,表情等的检测.      人脸特征文件目录: ../opencv2.46/opencv/data/haarcascades 人脸检测Harr分类器的介绍:http://www.cnblogs.com/mikewolf2002/p/3437883.html 分类器的训练步骤:http://note.sonots.com/SciSoftware/haartraining.html…
前言 本次编写所用的库为于仕祺老师免费提供的人脸检测库.真心好用,识别率和识别速度完全不是Opencv自带的程序能够比拟的.将其配合Opencv的EigenFace算法,基本上可以形成一个小型的毕业设计.(我是学机械的啊喂!!) 准备工作 1.下载在GitHub上的人脸检测库.我不提供百度云,只提供网址:https://github.com/ShiqiYu/libfacedetection. 2.配置好Opencv. 配置人脸检测库 1.新建一个MFC程序. 2.添加Opencv的属性表.(即配…
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 检测照片中的人脸,用Java可以实现吗? 当然可以,今天咱们用最少的时间.最简单的操作来体验这个实用的功能,当您提交一张带有人脸的照片后,会看到下图效果,所有人脸都被识别到并被框选出来了: 本篇以体验为主,不涉及具体的开发,后面还会有文章介绍完整的开发过程(包括源码) 风险提前告知…
图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 往期目录 视频人脸检测——Dlib版(六)OpenCV添加中文(五)图片人脸检测——Dlib版(四)视频人脸检测——OpenCV版(三)图片人脸检测——OpenCV版(二)OpenCV环境搭建(一)更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:…
在网上找到了一个博客,里面有大量内容适合初学者接触和了解人脸检测的博文,正好符合我目前的学习方面,故将链接放上来,后续将分类原博客的博文并加上学习笔记. 传送门: http://blog.sina.com.cn/s/articlelist_1602567857_3_1.html Adaboost算法原理 总的来说这是个算法,也可以说成是一个方法,有具体的流程而且分为多个版本,这个流程将会在完整学习后把最优的版本作为笔记放上来.引用来之其他博客的一句话:“Adaboost 算法是一种用来分类的方法…
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行出结果的确实没有找到,因此我总结了自己的训练经验. 目标检测分为三个步骤: 1.样本的创建 2.训练分类器 3.利用训练的分类器进行目标检测 第一步:样本的创建 ◆     样本分两种: 正样本与负样本(也有人翻译成:正例样本和反例样本),其中正样本是指待检目标样本(例如人脸,汽车,鼻子等),负样本…
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇<图片人脸检测——OpenCV版(二)> 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户,用户看到的效果就是视频的人脸检测. 效果预览: 实现步骤 使用OpenCV调用摄像头并展示 获取摄像头: cap = cv2.VideoCapture(0) 参数0表示,获取第一个摄像头. 显示摄像头 逐帧显示,代码如下: while (1): ret, img = ca…
前几篇文章中有提到对openCV环境配置,这里再重新梳理导入和使用openCV进行简单的人脸检测(包括使用级联分类器) 一 首先导入openCVLibrary320 二 设置gradle的sdk版本号与当前项目一致 compileSdkVersion 26 buildToolsVersion "26.0.2" defaultConfig { minSdkVersion 14 targetSdkVersion 26 } 三 新建 jniLibs 目录 在 app/src/main 目录下…