storm的并发机制】的更多相关文章

storm的并发机制 storm计算支持在多台机器上水平扩容,通过将计算切分为多个独立的tasks在集群上并发执行来实现. 一个task可以简单地理解:在集群某节点上运行的一个spout或者bolt实例. topology的组成部分:Nodes(服务器):配置在一个storm集群中的服务器,会执行topology的一部分运算.一个storm集群可以包括一个或者多个工作node; Workers(JVM虚拟机):一个NOde上相互独立运行的JVM进程.每个Node可以配置运行一个或者多个worke…
一.Storm的数据分发策略 1. Shuffle Grouping 随机分组,随机派发stream里面的tuple,保证每个bolt task接收到的tuple数目大致相同. 轮询,平均分配 2. Fields Grouping 按字段分组,比如,按"user-id"这个字段来分组,那么具有同样"user-id"的 tuple 会被分到相同的Bolt里的一个task, 而不同的"user-id"则可能会被分配到不同的task. 3. All G…
本文可作为 <<Storm-分布式实时计算模式>>一书1.4节的读书笔记 在Storm中,一个task就可以理解为在集群中某个节点上运行的一个spout或者bolt实例. 记住一个task是一个实例. 实例明白吧 Class Person 是一个类, persona,personb都是Person的一个实例. 在集群运行运行中,topology主要有四个组成部分. 他们从低到高分别是task(bolt/spout实例),Executor(线程),Workers(JVM虚拟机),No…
一.storm的并发 (1)Workers(JVMs):在一个物理节点上可以运行一个或多个独立的JVM进程.一个Topology可以包含一个或多个worker(并行的跑在不同的物理机上),所以worker process就是执行一个topology的子集, 并且worker只能对应于一个topology (2)Executors(threads):在一个workerJVM进程中运行着多个Java线程.一个executor线程可以执行一个或多个tasks.但一般默认每个executor只执行一个t…
什么是storm的并发度 一个topology(拓扑)在storm集群上最总是以executor和task的形式运行在suppervisor管理的worker节点上.而worker进程都是运行在jvm虚拟机上面的,每个拓扑都会被拆开多个组件分布式的运行在worker节点上. 1.worker 2.executor 3.task 这三个简单关系图: 一个worker工作进程运行一个拓扑的子集(其实就是拓扑的组件),每个组件的都会以executor(线程)在worker进程上执行,一个worker进…
一.简介:       storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成功处理.           如果任一个消息在timeout所指定的时间内没有完成处理,那这个tuple就失败了. 二.原理:              acker并不会为每个tuple都分配内存空间来完成跟踪,而是利用了一个非常巧妙的算法,这个算法只需使用恒定的20字节就可以完成整个tuple树的…
正在学习storm的大兄弟们,我又来传道授业解惑了,是不是觉得自己会用ack了.好吧,那就让我开始啪啪打你们脸吧. 先说一下ACK机制: 为了保证数据能正确的被处理, 对于spout产生的每一个tuple, storm都会进行跟踪. 这里面涉及到ack/fail的处理,如果一个tuple处理成功是指这个Tuple以及这个Tuple产生的所有Tuple都被成功处理, 会调用spout的ack方法: 如果失败是指这个Tuple或这个Tuple产生的所有Tuple中的某一个tuple处理失败, 则会调…
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理保障机制) 消息的"完整性处理" 在消息得到完整性处理后或处理失败后会发生什么 Storm 的可靠性 API 在 tuple 可以被重新处理的前提下,如何使应用正确运行 Storm 是以怎样以高效的方式实现可靠性 调整可靠性 Daemon Fault Tolerance(守护线程容错机制)…
一.概述 Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码,最终需要转化为汇编指令在CPU上执行,Java中所使用的并发机制依赖于JVM的实现和CPU的指令. 二.volatile的应用 2.1 认识volatile volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的"可见性". 可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值. 如果volatile变量修饰符使用恰当的话,他比sy…
前言 在Java中,线程是一个很关键的名词,也是很高频使用的一种资源.那么它的概念是什么呢,是如何定义的,用法又有哪些呢?为何说Android里只有一个主线程呢,什么是工作线程呢.线程又存在并发,并发机制的原理是什么.这些内容有些了解,有些又不是很清楚,所以有必要通过一篇文章的梳理,弄清其中的来龙去脉,为了之后的开发过程中提供更好的支持. 目录 线程定义 Java线程生命周期 线程用法 Android中的线程 工作线程 使用AsyncTask 什么是并发 并发机制原理 并发具体怎么用 线程定义…
Go 语言相比Java等一个很大的优势就是可以方便地编写并发程序.Go 语言内置了 goroutine 机制,使用goroutine可以快速地开发并发程序, 更好的利用多核处理器资源.这篇文章学习 goroutine 的应用及其调度实现. 一.Go语言对并发的支持 使用goroutine编程 使用 go 关键字用来创建 goroutine .将go声明放到一个需调用的函数之前,在相同地址空间调用运行这个函数,这样该函数执行时便会作为一个独立的并发线程.这种线程在Go语言中称作goroutine.…
一. 理解并发机制 1. 什么是并发,并发与多线程有什么关系? ①. 先从广义上来说,或者从实际场景上来说. 高并发通常是海量用户同时访问(比如:12306买票.淘宝的双十一抢购),如果把一个用户看做一个线程的话那么并发可以理解成多线程同时访问,高并发即海量线程同时访问. (ps:我们在这里模拟高并发可以for循环多个线程即可) ②.从代码或数据的层次上来说. 多个线程同时在一条相同的数据上执行多个数据库操作. 2. 从代码层次上来说,给并发分类. ①.积极并发(乐观并发.乐观锁):无论何时从数…
Java并发机制的底层实现原理 1.volatile volatile相当于轻量级的synchronized,在并发编程中保证数据的可见性,使用 valotile 修饰的变量,其内存模型会增加一个 Lock 前缀,而这个前缀在多核处理器中带来的效果是: (1)会将处理器缓存行的数据回写到内存中: (2)同时这个操作会使其它处理器里缓存了这个内存地址的数据无效: 2.synchronized synchronized是重量级锁,其在JVM实现的原理是基于进入和退出 Monitor 对象来实现同步代…
python多进程并发机制: 这里使用了multprocessing.Pool进程池,来动态增加进程 #coding=utf-8 from multiprocessing import Pool import time def ft(x): #多任务,系统自动化配进程执行 for i in range(2): print i,'-----------',x time.sleep(1) def main_process(): pool = Pool(processes=4) #控制进程池的大小,为…
storm消息容错机制(ack-fail) 1.介绍 在storm中,可靠的信息处理机制是从spout开始的. 一个提供了可靠的处理机制的spout需要记录他发射出去的tuple,当下游bolt处理tuple或者子tuple失败时spout能够重新发射. Storm通过调用Spout的nextTuple()发送一个tuple.为实现可靠的消息处理,首先要给每个发出的tuple带上唯一的ID,并且将ID作为参数传递给SpoutOutputCollector的emit()方法:collector.e…
一.并发编程的挑战 1.上下文切换 (1)上下文切换的问题 在处理器上提供了强大的并行性就使得程序的并发成为了可能.处理器通过给不同的线程分配不同的时间片以实现线程执行的自动调度和切换,实现了程序并行的假象. 在单线程中:线程保存串行的执行,线程间的上下文切换不会造成很大的性能开销. 而在多线程中:线程之间频繁的调度需要进行上下文切换以保存当前执行线程的上下文信息和加载将要执行线程的上下文信息,而上下文切换时需要底层处理器.操作系统.Java虚拟机提供支持的会消耗很多的性能开 销.如果频繁的进行…
Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码转化为汇编指令在CPU上执行.Java中的并发机制依赖于JVM的实现和CPU的指令. Java语言规范第三版中对volatile的定义如下:Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排它锁单独获得这个变量.Java语言提供了volatile.若一个字段被声明为volatile,Java线程内存模型确保所有线程看到这个变量的值是一致的.volatile不会引起…
传统意义上OS提供的并发机制包含进程和线程两个级别.考虑到实际复杂性,c++11仅提供了线程并发机制. c++11提供的线程并发机制主要位于四个头文件中:..... 线程并发机制包括线程管理.原子操作.线程同步对象. 线程管理 c++11中将可并发执行的运算成为一个任务(task),在OS的线程模型中,一个任务就是一个线程,实际需要在创建时指定线程函数.c++基于此提供了更为优雅的线程处理模型,不需要关心类型转换和指针的处理,所有线程管理的模型是基于std::thread实现的.在c++中一个任…
一.简介: storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成功处理.如果任一个消息在timeout所指定的时间内没有完成处理,那这个tuple就失败了. 二.原理: acker并不会为每个tuple都分配内存空间来完成跟踪,而是利用了一个非常巧妙的算法,这个算法只需使用恒定的20字节就可以完成整个tuple树的跟踪. 具体原理: acker对于每个spout-tuple…
前言 为了保证tuple的强有序和exactly-once语义,storm提供了事务机制,为每个tuple提供一个id 设计方法1 为每个tuple设置一个事务id,在数据库保存事务id和当前处理的id做比较. 1.两个id不一样,由于事务的强有序特点,判断出该tuple没有出现过,所以更新id 2.id一样,重复出现,可以不用处理 问题: 这样做会导致新能很低,每个tuple都必须处理完后才能处理下一个tuple(否则会影响和下一个tuple的顺序),并且每个tuple还得至少访问一次数据库…