点云网格化算法---MPA】的更多相关文章

MPA网格化算法思路 第一步:初始化一个种子三角面.(随机选点,基于该点进行临近搜索到第二点:在基于该线段中点临近搜索到第三点) 图1 第二步:在种子三角面的基础上,进行面片的扩充,利用边的中点进行临近搜索,碰到合适的点,就会跟这条边构成一个新的三角面,同时构造出两条新边.依次类推… 直到队列中不再有满足条件外边提供中点检索为止. 第三步:寻找新的种子三角面,进行第二步:直到再也无法找到合适的种子三角面,退出循环. 第四步:输出mesh,包含生成三角面,以及原始点云. 图2 主要算法实现: ;…
​蝶恋花·槛菊愁烟兰泣露 槛菊愁烟兰泣露,罗幕轻寒,燕子双飞去. 明月不谙离恨苦,斜光到晓穿朱户. 昨夜西风凋碧树,独上高楼,望尽天涯路. 欲寄彩笺兼尺素.山长水阔知何处? --晏殊 导读: 3D点云配准是计算机视觉的关键研究问题之一,在多领域工程应用中具有重要应用,如逆向工程.SLAM.图像处理和模式识别等.点云配准的目的是求解出同一坐标下不同姿态点云的变换矩阵,利用该矩阵实现多视扫描点云的精确配准,最终获取完整的3D数字模型.场景.本质上,关于六自由度(旋转和平移)的3D点云配准问题是典型的…
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法.在VTK.PCL.MRPT.MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Algorithm Implementations. ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优.PCL点云库已经实现了多种…
1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出来).基于欧式算法的点云分割面对有牵连的点云就无力了(比如风筝和人,在不用三维形态学去掉中间的线之前,是无法分割风筝和人的).基于法线等信息的区域生长算法则对平面更有效,没法靠它来分割桌上的碗和杯子.也就是说,上述算法更关注能不能分割,除此之外,我们还需要一个方法来解决分割的“好不好”这个问题.也就…
1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出来).基于欧式算法的点云分割面对有牵连的点云就无力了(比如风筝和人,在不用三维形态学去掉中间的线之前,是无法分割风筝和人的).基于法线等信息的区域生长算法则对平面更有效,没法靠它来分割桌上的碗和杯子.也就是说,上述算法更关注能不能分割,除此之外,我们还需要一个方法来解决分割的“好不好”这个问题.也就…
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一起学习交流 小白:师兄,师兄,你在<从零开始一起学习SLAM | 给点云加个滤网>.<从零开始一起学习SLAM | 点云平滑法线估计>中都提到了点云网格化,这个听起来高大上,不过到底是什么意思呢? 师兄:别急,是这样的:你看我们之前处理的都是一个个点,不管是滤波还是平滑,我们都是对一个…
对VSLAM和三维重建感兴趣的在计算机视觉life"公众号菜单栏回复"三维视觉"进交流群. 小白:师兄,上次你讲了点云拼接后,我回去费了不少时间研究,终于得到了和你给的参考结果差不多的点云,不过,这个点云"可远观而不可近看",放大了看就只有一个个稀疏的点了.究竟它能干什么呢? 师兄:这个问题嘛...基本就和SLAM的作用一样,定位和建图 小白:定位好理解,可是师兄说建图,这么稀疏的地图有什么用呢? 师兄:地图分很多种,稀疏的,稠密的,还有半稀疏的等,你输出…
效果: http://lucyhao.com/tags/ hexo自带的tag cloud的标签展现不太美观,想能够展现出“云”效果的标签.在网上找到了d3-cloud这个项目,github地址:https://github.com/jasondavies/d3-cloud demo地址:https://www.jasondavies.com/wordcloud/ hexo生成的是静态博客,所以最后在网上看到的都是静态的内容,也就是说,我们的看到的标签云也是静态的已经生成好的内容,并不会随着刷新…
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割的搞法大概有两种:剑宗——自低向上:先将图像聚类成小的像素团再慢慢合并,气宗——自顶向下:用多尺度模板分割图像,再进一步将图像优化分割成不同物体.当然,还有将二者合而为一的方法:training with data set. 这第三种方法也不好,太依赖于已知的物体而失去了灵活性.家庭机器人面对家里越…
1.点云的频率 今天在阅读分割有关的文献时,惊喜的发现,点云和图像一样,有可能也存在频率的概念.但这个概念并未在文献中出现也未被使用,谨在本博文中滥用一下“高频”一词.点云表达的是三维空间中的一种信息,这种信息本身并没有一一对应的函数值.故点云本身并没有在讲诉一种变化的信号.但在抽象意义上,点云必然是在表达某种信号的,虽然没有明确的时间关系,但应该会存在某种空间关系(例如LiDar点云).我们可以人为的指定点云空间中的一个点(例如Scan的重心或LiDar的“源”),基于此点来讨论点云在各个方向…