C++读取MNIST数据集】的更多相关文章

有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/env python # -*- coding: UTF-8 -*- import struct # from bp import * from datetime import datetime # 数据加载器基类 class Loader(object):     def __init__(sel…
MNIST数据集获取 MNIST数据集是入门机器学习/模式识别的最经典数据集之一.最早于1998年Yan Lecun在论文: Gradient-based learning applied to document recognition. 中提出.经典的LeNet-5 CNN网络也是在该论文中提出的. 数据集包含了0-9共10类手写数字图片,每张图片都做了尺寸归一化,都是28x28大小的灰度图.每张图片中像素值大小在0-255之间,其中0是黑色背景,255是白色前景.如下图所示: MNIST共包…
MNIST是一个标准的手写字符测试集. Mnist数据集对应四个文件: train-images-idx3-ubyte: training set images  train-labels-idx1-ubyte: training set labels  t10k-images-idx3-ubyte:  test set images  t10k-labels-idx1-ubyte:  test set labels 训练数据集包含60000幅图片,测试集包含10000幅图片. 文件格式: TR…
#coding: utf-8 from tensorflow.examples.tutorials.mnist import input_data import scipy.misc import os # 读取MNIST数据集.如果不存在会事先下载. mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 我们把原始图片保存在MNIST_data/raw/文件夹下 # 如果没有这个文件夹会自动创建 save_d…
tensorflow读取本地MNIST数据集 数据放入文件夹(不要解压gz): >>> import tensorflow as tf >>> from tensorflow.examples.tutorials.mnist import input_data >>> MNIST_data =r'D:\tensorflow\mnist' >>> mnist = input_data.read_data_sets(MNIST_data,…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
今天来做UFLDL的第二个实验,向量化.我们都知道,在matlab里面基本上如果使用for循环,程序是会慢的一逼的(可以说基本就运行不下去)所以在这呢,我们需要对程序进行向量化的处理,所谓向量化就是将matlab里面所有的for循环用矩阵运算的方法实现,在这里呢,因为之前的实验我已经是按照向量化的形式编写的代码,所以这里我只把我对代码修改的部分发上来供大家参考吧.本文为本人原创,参考了UFLDL的教程,是我自己个人对于这一系列教程的理解以及自己的实验结果.非盈利性质网站转载请在文章开头处著名本文…
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数据集进行训练和利用caffe来实现别人论文中的模型(目前在尝试的是轻量级的SqueezeNet)三步走.不求深度,但求详细.因为说实话caffe-windows的配置当初花了挺多时间的,目前貌似还真没有从头开始一步步讲起的教程,所以博主就争取试着每一步都讲清楚吧. 这里说些题外话:之所以选择Sque…
使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libsvm中,完全就是一个工具包,拿来就能用.当时问了好几遍老师,公司里做svm就是这么简单的?敲几个命令行就可以了...貌似是这样的.当然,在大数据化的背景下,还会有比如:并行SVM.多核函数SVM等情况的研究和应用. 实验环节老师给的数据很简单,也就1000个数据点,使用svm进行分类.没有太多好说的…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…