文本数据预处理的第一步通常是进行分词,分词后会进行向量化的操作.在介绍向量化之前,我们先来了解下词袋模型. 1.词袋模型(Bag of words,简称 BoW ) 词袋模型假设我们不考虑文本中词与词之间的上下文关系,仅仅只考虑所有词的权重.而权重与词在文本中出现的频率有关. 词袋模型首先会进行分词,在分词之后,通过统计每个词在文本中出现的次数,我们就可以得到该文本基于词的特征,如果将各个文本样本的这些词与对应的词频放在一起,就是我们常说的向量化.向量化完毕后一般也会使用 TF-IDF 进行特征…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-score标准化 z-score标准化指的是将数据转化成均值为0方差为1的高斯分布,也就是通常说的z-score标准化,但是对于不服从标准正态分布的特征,这样做效果会…
  关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的最小最大规范化方法(x-min(x))/(max(x)-min(x)) 除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 使用这种方法的目的包括: 1.对于方差非常小的属性可以…
HBase本身提供了很多种数据导入的方式,通常有两种常用方式: 使用HBase提供的TableOutputFormat,原理是通过一个Mapreduce作业将数据导入HBase 另一种方式就是使用HBase原生Client API 本文就是示范如何通过MapReduce作业从一个文件读取数据并写入到HBase中. 首先启动Hadoop与HBase,然后创建一个空表,用于后面导入数据: hbase(main):006:0> create 'mytable','cf' 0 row(s) in 10.…
import sys import codecs # 1. 参数设置 MODE = "PTB_TRAIN" # 将MODE设置为"PTB_TRAIN", "PTB_VALID", "PTB_TEST", "TRANSLATE_EN", "TRANSLATE_ZH"之一. if MODE == "PTB_TRAIN": # PTB训练数据 RAW_DATA = &quo…
一,准备数据 imdb数据集的目标是根据电影评论的文本内容预测评论的情感标签. 训练集有20000条电影评论文本,测试集有5000条电影评论文本,其中正面评论和负面评论都各占一半. 文本数据预处理较为繁琐,包括中文切词(本示例不涉及),构建词典,编码转换,序列填充,构建数据管道等等. 在tensorflow中完成文本数据预处理的常用方案有两种,第一种是利用tf.keras.preprocessing中的Tokenizer词典构建工具和tf.keras.utils.Sequence构建文本数据生成…
使用Pandas进行数据预处理 数据清洗中不是每一步都是必须的,按实际需求操作. 内容目录 1.数据的生成与导入 2.数据信息查看 2.1.查看整体数据信息 2.2.查看数据维度.列名称.数据格式 2.3.查看数据特殊值和数值 2.3.1.查看空值 2.3.2.查看唯一值 2.3.3.查看数值 2.3.4.查看前后数据 3.数据清洗和预处理等步骤 3.1.空值处理 3.2.空格处理 3.3.字符串大小写处理 3.4.更改数据类型和列名称 3.5.重复值处理 3.6.数据替换 3.7.数据合并和排…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimization algorithms, such as gradient descent, that are used within machine learning algorithms that weight inputs (e.g. regression and neural networks).…